show · character.dirichlet.legendre_symbol all knowls · up · search:

Let $x$ be an integer and $p$ be an odd prime. The Legendre symbol \(\displaystyle\left(\frac{x}{p}\right)\) is defined to be \[ \left( \frac{x}{p} \right) = \left\{ \begin{array}{cl} 0 & \text{if } p \mid x, \\ 1 & \text{if } x \bmod p \text{ is a non-zero square in } \Z/p\Z, \\ -1 & \text{if } x \bmod p \text{ is not a square in } \Z/p\Z. \end{array} \right. \] It can be computed efficiently by using the following formulae inductively:

  • (Multiplicativity) $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$.
  • (Special cases) $\left(\frac{-1}{p}\right)= \left\{ \begin{array}{cl} 1 & \text{if } p \equiv 1 \bmod 4 \\ -1 & \text{if } p \equiv -1 \bmod 4 \end{array} \right.$ and $\left(\frac{2}{p}\right)=\left\{ \begin{array}{cl} 1 & \text{if } p \equiv \pm1 \bmod 8 \\ -1 & \text{if } p \equiv \pm3 \bmod 8 \end{array} \right.$.

  • (Quadratic reciprocity) If $p$ and $q$ are distinct odd primes, then $\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}2 \frac{q-1}2} \left(\frac{p}{q}\right)$.

In particular, for a fixed odd prime $p$, $x \mapsto \left(\frac{x}{p}\right)$ is a Dirichlet character modulo $p$.

Authors:
Knowl status:
  • Review status: reviewed
  • Last edited by Kiran S. Kedlaya on 2018-07-04 19:45:01
Referred to by:
History: (expand/hide all)