Let $\chi$ be a Dirichlet character with modulus $q$. The Kloosterman sum $K(a,b,\chi)$ is defined by \[K(a,b,\chi) = \sum_{r \in (\mathbb{Z}/q\mathbb{Z})^\times} \chi(r)\zeta^{ar+br^{-1}},\]
where $\zeta = e^{2\pi i/q}$. This reduces to the Gauss sum if $b=0$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Alina Bucur on 2018-07-04 18:39:08
Referred to by:
History:
(expand/hide all)
- 2018-07-04 18:39:08 by Alina Bucur (Reviewed)