show · character.dirichlet.gauss_sum all knowls · up · search:

Let $\chi$ be a Dirichlet character with modulus $q$. For $a \in \mathbb{Z}$, the Gauss sum associated to $\chi$ and $a$ is given by $$ \large \tau_{a}(\chi) = \sum_{r \,\in\, \mathbb{Z}/q\mathbb{Z}} \chi(r)\, e^{2\pi iar/q}. $$ The Gauss sum $\tau_1(\chi)$ is often called "the Gauss sum" of $\chi$.

Authors:
Knowl status:
  • Review status: reviewed
  • Last edited by Alina Bucur on 2018-07-04 18:11:09
Referred to by:
History: (expand/hide all)