The conductor of a Dirichlet character $\chi$ modulo $q$ is the least positive integer $q_1$ dividing $q$ for which $\chi(n+q_1)=\chi(n)$ for all $n$ coprime to $q$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Alina Bucur on 2018-07-04 17:48:19
Referred to by:
History:
(expand/hide all)
Differences
(show/hide)
- character.dirichlet
- character.dirichlet.basic_properties
- character.dirichlet.conrey.conductor
- character.dirichlet.primitive
- cmf.oldspace
- cmf.twist
- lfunction.conductor
- lfunction.dirichlet
- lmfdb/characters/templates/Character.html (line 31)
- lmfdb/characters/templates/CharacterNavigate.html (line 18)
- lmfdb/characters/templates/CharacterNavigate.html (line 56)
- lmfdb/characters/templates/ConductorList.html (line 92)
- lmfdb/characters/templates/character_search_results.html (line 12)
- lmfdb/characters/templates/character_search_results.html (line 77)
- lmfdb/classical_modular_forms/templates/cmf_space.html (line 28)
- lmfdb/lfunctions/templates/Degree1.html (line 19)