The conductor of a Dirichlet character $\chi$ modulo $q$ is the least positive integer $q_1$ dividing $q$ for which $\chi(n+kq_1)=\chi(n)$ for all $n$ and $n+kq_1$ coprime to $q$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Pascal Molin on 2019-07-06 11:28:50
Referred to by:
History:
(expand/hide all)
- character.dirichlet
- character.dirichlet.4.3.bottom
- character.dirichlet.basic_properties
- character.dirichlet.conrey.conductor
- character.dirichlet.minimal
- character.dirichlet.primitive
- cmf.oldspace
- cmf.twist
- columns.char_dirichlet.conductor
- columns.char_orbits.conductor
- lfunction.conductor
- lfunction.dirichlet
- lmfdb/characters/main.py (line 97)
- lmfdb/characters/main.py (line 245)
- lmfdb/characters/main.py (line 730)
- lmfdb/characters/templates/CharacterCommon.html (line 30)
- lmfdb/characters/templates/CharacterNavigate.html (line 17)
- lmfdb/characters/templates/ConductorList.html (line 91)
- lmfdb/classical_modular_forms/templates/cmf_space.html (line 28)
- 2019-07-06 11:28:50 by Pascal Molin (Reviewed)
- 2018-07-04 17:48:19 by Alina Bucur (Reviewed)