A Dirichlet character is a function \(\chi: \Z\to \C\) together with a positive integer $q$ called the modulus such that $\chi$ is completely multiplicative, i.e. $\chi(mn)=\chi(m)\chi(n)$ for all integers $m$ and $n$, and $\chi$ is periodic modulo $q$, i.e. $\chi(n+q)=\chi(n)$ for all $n$. If $(n,q)>1$ then $\chi(n)=0$, whereas if $(n,q)=1$, then $\chi(n)$ is a root of unity. The character $\chi$ is primitive if its conductor is equal to its modulus.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Andrew Sutherland on 2016-07-02 16:24:07
Referred to by:
History:
(expand/hide all)
- artin.dimensionone
- character.dirichlet.3.2.bottom
- character.dirichlet.4.3.bottom
- character.dirichlet.5.2.bottom
- character.dirichlet.8.7.bottom
- character.dirichlet.basic_properties
- character.dirichlet.conductor
- character.dirichlet.conrey
- character.dirichlet.conrey.conductor
- character.dirichlet.conrey.index
- character.dirichlet.conrey.orbit_label
- character.dirichlet.conrey.order
- character.dirichlet.conrey.parity
- character.dirichlet.field_cut_out
- character.dirichlet.galois_orbit
- character.dirichlet.galois_orbit_index
- character.dirichlet.galois_orbit_label
- character.dirichlet.gauss_sum
- character.dirichlet.group
- character.dirichlet.group.generators
- character.dirichlet.group.order
- character.dirichlet.induce
- character.dirichlet.jacobi_sum
- character.dirichlet.kloosterman_sum
- character.dirichlet.legendre_symbol
- character.dirichlet.minimal
- character.dirichlet.order
- character.dirichlet.parity
- character.dirichlet.primitive
- character.dirichlet.principal
- character.dirichlet.related_fields
- character.dirichlet.search_input
- character.dirichlet.values
- character.dirichlet.values_on_gens
- character.unit_group
- cmf
- cmf.character
- cmf.cusp_form
- cmf.decomposition.new.gamma1
- cmf.embedding
- cmf.hecke_operator
- cmf.inner_twist
- cmf.inner_twist_count
- cmf.inner_twist_group
- cmf.inner_twist_multiplicity
- cmf.inner_twist_proved
- cmf.label
- cmf.newform
- cmf.newspaces
- cmf.self_twist
- cmf.shimura_correspondence
- cmf.twist
- columns.char_dirichlet.conductor
- columns.char_dirichlet.degree
- columns.char_dirichlet.first
- columns.char_dirichlet.is_even
- columns.char_dirichlet.is_minimal
- columns.char_dirichlet.is_primitive
- columns.char_dirichlet.is_real
- columns.char_dirichlet.label
- columns.char_dirichlet.last
- columns.char_dirichlet.modulus
- columns.char_dirichlet.order
- columns.char_dirichlet.primitive_orbit
- columns.char_orbits.conductor
- columns.char_orbits.degree
- columns.char_orbits.first_label
- columns.char_orbits.is_minimal
- columns.char_orbits.is_primitive
- columns.char_orbits.is_real
- columns.char_orbits.label
- columns.char_orbits.last_label
- columns.char_orbits.modulus
- columns.char_orbits.order
- columns.char_orbits.parity
- columns.char_orbits.primitive_label
- dq.character.dirichlet.extent
- lfunction.central_character
- lfunction.conductor
- lfunction.dirichlet
- lfunction.history.dirichlet
- lfunction.history.hecke_characters
- lfunction.label
- mf.ellitpic.self_twist
- mf.half_integral_weight
- mf.maass.label
- mf.siegel.label
- nf.dirichlet_group
- rcs
- rcs.cande.character.dirichlet
- rcs.cande.lfunction
- rcs.rigor.lfunction.dirichlet
- lmfdb/characters/main.py (line 650)
- lmfdb/characters/main.py (line 800)
- lmfdb/characters/main.py (line 811)
- lmfdb/characters/templates/CharGroup.html (line 41)
- lmfdb/characters/templates/CharacterGaloisOrbit.html (line 7)
- lmfdb/characters/templates/ConductorList.html (line 90)
- lmfdb/characters/templates/ModulusList.html (line 90)
- lmfdb/characters/templates/OrderList.html (line 89)
- 2016-07-02 16:24:07 by Andrew Sutherland (Reviewed)