An abelian variety is simple if it is nonzero and not isogenous to a product of abelian varieties of lower dimension.
Knowl status:
- Review status: reviewed
- Last edited by Bjorn Poonen on 2022-03-26 16:27:43
Referred to by:
History:
(expand/hide all)
- av.decomposition
- av.geometrically_simple
- columns.av_fq_isog.is_simple
- columns.av_fq_isog.max_divalg_dim
- columns.av_fq_isog.simple_distinct
- columns.av_fq_isog.simple_factors
- columns.av_fq_isog.simple_multiplicities
- mf.bianchi.2.0.4.1-34225.3-a.top
- modcurve.decomposition
- modcurve.rank
- modcurve.simple
- nf.weil_polynomial
- lmfdb/abvar/fq/main.py (line 344)
- lmfdb/abvar/fq/stats.py (line 49)
- lmfdb/abvar/fq/stats.py (line 121)
- lmfdb/abvar/fq/templates/show-abvarfq.html (lines 39-43)
- lmfdb/abvar/fq/test_av.py (line 30)
- lmfdb/modular_curves/templates/modcurve.html (line 146)
- lmfdb/modular_curves/templates/modcurve_isoclass.html (line 114)
- 2022-03-26 16:27:43 by Bjorn Poonen (Reviewed)
- 2019-05-04 20:39:23 by Kiran S. Kedlaya (Reviewed)
- 2016-10-30 00:03:14 by Christelle Vincent