show · av.endomorphism_field all knowls · up · search:

The endomorphism field of an abelian variety $A$ over a field $k$ is the minimal extension $L \supset k$ in $\overline{k}$ such that $\End A_L = \End A_{\overline{k}}$. It is a finite Galois extension of $k$.

Knowl status:
  • Review status: beta
  • Last edited by Bjorn Poonen on 2022-03-26 15:39:09
Referred to by:
History: (expand/hide all) Differences (show/hide)