If an abelian variety $A$ is not simple, it is isogenous to a product of simple lower dimensional abelian varieties. These simple abelian varieties $B_i$ are the isogeny factors of $A$, and we say that $A$ decomposes (up to isogeny) into the product of the $B_i$'s: $$A \sim B_1 \times \cdots \times B_n$$ Note that two elements of this product might be isogenous; in other words, elements of the decomposition may appear with multiplicity.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Kiran S. Kedlaya on 2019-05-04 20:31:44
Referred to by:
History:
(expand/hide all)
- av.fq.honda_tate
- av.simple
- av.squarefree
- columns.av_fq_endalg_factors.multiplicity
- columns.av_fq_isog.dim1_distinct
- columns.av_fq_isog.dim1_factors
- columns.av_fq_isog.dim2_distinct
- columns.av_fq_isog.dim2_factors
- columns.av_fq_isog.dim3_distinct
- columns.av_fq_isog.dim3_factors
- columns.av_fq_isog.dim4_distinct
- columns.av_fq_isog.dim4_factors
- columns.av_fq_isog.dim5_distinct
- columns.av_fq_isog.dim5_factors
- columns.av_fq_isog.geom_dim1_distinct
- columns.av_fq_isog.geom_dim1_factors
- columns.av_fq_isog.geom_dim2_distinct
- columns.av_fq_isog.geom_dim2_factors
- columns.av_fq_isog.geom_dim3_distinct
- columns.av_fq_isog.geom_dim3_factors
- columns.av_fq_isog.geom_dim4_distinct
- columns.av_fq_isog.geom_dim4_factors
- columns.av_fq_isog.geom_dim5_distinct
- columns.av_fq_isog.geom_dim5_factors
- columns.av_fq_isog.is_squarefree
- columns.av_fq_isog.simple_distinct
- columns.av_fq_isog.simple_factors
- columns.av_fq_isog.simple_multiplicities
- modcurve.decomposition
- modcurve.newform_level
- modcurve.rank
- lmfdb/abvar/fq/main.py (line 446)
- lmfdb/abvar/fq/main.py (lines 456-459)
- lmfdb/abvar/fq/main.py (line 472)
- lmfdb/abvar/fq/main.py (line 489)
- lmfdb/abvar/fq/main.py (line 506)
- lmfdb/abvar/fq/main.py (line 536)
- lmfdb/abvar/fq/main.py (line 697)
- lmfdb/abvar/fq/templates/show-abvarfq.html (line 170)
- 2022-03-26 15:36:08 by Bjorn Poonen
- 2019-05-04 20:31:44 by Kiran S. Kedlaya (Reviewed)
- 2016-10-29 23:53:43 by Christelle Vincent