If an abelian variety $A$ is not simple, it is isogenous to a product of simple lower dimensional abelian varieties. These simple abelian varieties $B_i$ are the isogeny factors of $A$, and we say that $A$ decomposes (up to isogeny) into the product of the $B_i$'s: $$A \sim B_1 \times \cdots \times B_n$$ Note that two elements of this product might be isogenous; in other words, elements of the decomposition may appear with multiplicity.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Kiran S. Kedlaya on 2019-05-04 20:31:44
Referred to by:
History:
(expand/hide all)
Differences
(show/hide)
- av.fq.honda_tate
- av.simple
- lmfdb/abvar/fq/main.py (line 380)
- lmfdb/abvar/fq/main.py (lines 389-391)
- lmfdb/abvar/fq/main.py (line 403)
- lmfdb/abvar/fq/main.py (line 420)
- lmfdb/abvar/fq/main.py (line 437)
- lmfdb/abvar/fq/main.py (line 468)
- lmfdb/abvar/fq/templates/abvarfq-search-results.html (line 25)
- lmfdb/abvar/fq/templates/show-abvarfq.html (line 118)