An Artin representation is a continuous homomorphism $\rho:\mathrm{Gal}(\overline{\Q}/\Q)\to\GL(V)$ from the absolute Galois group of $\Q$ to the automorphism group of a finite-dimensional $\C$-vector space $V$. Here continuity means that $\rho$ factors through the Galois group of some finite extension $K/\Q$. The smallest such $K$ is called the Artin field of $\rho$.
Knowl status:
- Review status: reviewed
- Last edited by Andrew Sutherland on 2019-07-31 15:05:06
Referred to by:
History:
(expand/hide all)
- artin.2.23.3t2.b.a.bottom
- artin.conductor
- artin.determinant
- artin.dimension
- artin.dimensionone
- artin.galois_orbit
- artin.gg_quotient
- artin.label
- artin.lfunction
- artin.number_field
- artin.parity
- artin.projective_image
- artin.projective_image_type
- artin.projective_stem_field
- artin.ramified_primes
- artin.root_number
- artin.search_input
- artin.stem_field
- artin.trace_of_complex_conj
- artin.unramified_primes
- cmf.galois_representation
- rcs.cande.artin
- rcs.cande.cmf
- rcs.cande.lfunction
- rcs.source.cmf
- st_group.definition
- lmfdb/artin_representations/__init__.py (line 9)
- lmfdb/artin_representations/main.py (line 459)
- lmfdb/artin_representations/main.py (line 772)
- lmfdb/artin_representations/main.py (line 787)
- lmfdb/lfunctions/Lfunction.py (line 1235)
- lmfdb/lfunctions/Lfunction.py (line 1300)
- lmfdb/lfunctions/Lfunction_base.py (line 79)
- lmfdb/lfunctions/Lfunction_base.py (line 239)
- lmfdb/lfunctions/main.py (line 1351)
- lmfdb/number_fields/templates/nf-show-field.html (line 268)
- scripts/artin_representations/extract_art.py (line 68)
- scripts/artin_representations/pull-reps.py (line 7)
- 2019-07-31 15:05:06 by Andrew Sutherland (Reviewed)
- 2019-05-02 20:45:01 by Alina Bucur (Reviewed)
- 2019-05-02 20:44:28 by Alina Bucur
- 2012-06-26 13:50:32 by David Farmer