Let $N \in \mathbb{N}$. The modular curve $X_0(N)$ is an algebraic curve defined over $\Q$ whose points correspond to pairs $(E,\phi)$, where $E$ is an elliptic curve and $\phi$ is an isogeny with domain $E$ and kernel a cyclic group of order $N$, with the exception of particular points called cusps which correspond to degenerate such pairs.
The set of its complex points $X_0(N)(\C)$ is naturally isomorphic to the quotient of the completed upper half plane $\Gamma_0(N) \backslash \mathcal{H}^*$ as a Riemann surface.
Authors:
Knowl status:
- Review status: beta
- Last edited by Nicolas Mascot on 2015-12-14 18:24:31
Referred to by:
History:
(expand/hide all)
- ag.modcurve.x1
- cmf.atkin-lehner
- cmf.fricke
- ec.q.101.a1.top
- ec.q.11.a2.top
- ec.q.118.a1.top
- ec.q.123.b1.top
- ec.q.131.a1.top
- ec.q.14.a6.top
- ec.q.141.d1.top
- ec.q.142.a1.top
- ec.q.143.a1.top
- ec.q.15.a5.top
- ec.q.155.c1.top
- ec.q.17.a3.top
- ec.q.19.a2.top
- ec.q.20.a4.top
- ec.q.21.a5.top
- ec.q.24.a4.top
- ec.q.27.a3.top
- ec.q.32.a4.top
- ec.q.36.a4.top
- ec.q.37.a1.top
- ec.q.43.a1.top
- ec.q.49.a4.top
- ec.q.53.a1.top
- ec.q.57.a1.top
- ec.q.58.a1.top
- ec.q.61.a1.top
- ec.q.65.a1.bottom
- ec.q.65.a1.top
- ec.q.65.a2.top
- ec.q.77.a1.top
- ec.q.79.a1.top
- ec.q.83.a1.top
- ec.q.91.a1.top
- g2c.10609.a.10609.1.top
- g2c.1225.a.6125.1.top
- g2c.1369.a.50653.1.top
- g2c.196.a.21952.1.top
- g2c.2500.a.50000.1.top
- g2c.27889.a.27889.1.top
- g2c.363.a.11979.1.top
- g2c.36481.a.36481.1.top
- g2c.4489.a.4489.1.top
- g2c.450.a.2700.1.top
- g2c.450.a.36450.1.top
- g2c.529.a.529.1.top
- g2c.5329.b.5329.1.top
- g2c.676.a.562432.1.top
- g2c.841.a.841.1.top
- g2c.961.a.923521.1.top