The Jacobian of a (smooth, projective, geometrically integral) curve of genus $g$ is an abelian variety of dimension $g$ that is canonically associated to the curve.
Points on the Jacobian correspond to certain formal sums of points on the curve, modulo an equivalence relation. By choosing a rational point on the curve, one can embed the curve in its Jacobian (this embedding is known as the Abel-Jacobi map); for elliptic curves this embedding is an isomorphism, but otherwise not.
Note that it is possible for an abelian variety to be isogenous to the Jacobian of a curve without being isomorphic to one.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Christelle Vincent on 2017-05-31 04:29:14
Referred to by:
History:
(expand/hide all)
- ag.abelian_surface
- ag.conductor
- av.fq.curve_point_counts
- av.fq.jacobian
- av.hyperelliptic_count
- av.isogeny_class
- av.jacobian_count
- av.princ_polarizable
- av.theta_divisor
- curve.highergenus.aut.groupalgebradecomp
- dq.av.fq.reliability
- dq.curve.highergenus.aut.source
- ec.q.49.a2.bottom
- g2c.1116.a.214272.1.bottom
- g2c.1225.a.6125.1.top
- g2c.363.a.11979.1.top
- g2c.450.a.2700.1.top
- g2c.529.a.529.1.top
- g2c.587.a.587.1.top
- g2c.841.a.841.1.top
- g2c.976.a.999424.1.bottom
- g2c.976.a.999424.1.top
- g2c.997.b.997.1.top
- g2c.all_rational_points
- g2c.gl2type
- g2c.good_reduction
- g2c.has_square_sha
- g2c.invariants
- g2c.isogeny_class
- g2c.jacobian
- g2c.lfunction
- g2c.real_period
- g2c.st_group
- g2c.st_group_identity_component
- g2c.tamagawa
- g2c.torsion_order
- rcs.rigor.av.fq
- lmfdb/abvar/fq/main.py (line 378)
- lmfdb/abvar/fq/stats.py (line 51)
- lmfdb/abvar/fq/stats.py (lines 130-135)
- lmfdb/abvar/fq/templates/show-abvarfq.html (lines 64-75)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-show-passport.html (line 32)
- 2017-05-31 04:29:14 by Christelle Vincent (Reviewed)