The Jacobian of a (smooth, projective, geometrically integral) curve $X$ of genus $g$ over a field $k$ is a $g$-dimensional principally polarized abelian variety $J$ that is canonically associated to $X$.
If $X$ has a $k$-rational point, then $J(k)$ is isomorphic to the group of degree zero divisors on $X$ modulo linear equivalence. A choice of rational point on $X$ determines a morphism $X \to J$ called an Abel-Jacobi map; it is an embedding if and only if $g \ge 1$, and an isomorphism if and only if $g=1$.
The Torelli theorem states that if $X$ and $Y$ are curves whose Jacobians are isomorphic as principally polarized abelian varieties, then $X$ and $Y$ are isomorphic. It is possible, however, for non-isomorphic curves to have Jacobians that are isomorphic as unpolarized abelian varieties.
- Review status: reviewed
- Last edited by Bjorn Poonen on 2022-03-26 16:16:32
- ag.abelian_surface
- ag.conductor
- ag.good_reduction
- av.fq.curve_point_counts
- av.fq.jacobian
- av.hyperelliptic_count
- av.isogeny_class
- av.jacobian_count
- av.princ_polarizable
- av.theta_divisor
- columns.gps_gl2zhat.rank
- columns.gps_gl2zhat.simple
- columns.gps_gl2zhat_fine.coarse_class
- columns.gps_gl2zhat_fine.rank
- columns.gps_gl2zhat_test.dims
- columns.gps_gl2zhat_test.newforms
- columns.gps_gl2zhat_test.rank
- curve.highergenus.aut.characters
- curve.highergenus.aut.groupalgebradecomp
- dq.curve.highergenus.aut.source
- ec.q.49.a2.bottom
- g2c.1116.a.214272.1.bottom
- g2c.1225.a.6125.1.top
- g2c.169.a.169.1.bottom
- g2c.20736.l.373248.1.bottom
- g2c.25913.a.25913.1.bottom
- g2c.2916.b.11664.1.bottom
- g2c.3319.a.3319.1.bottom
- g2c.336.a.172032.1.bottom
- g2c.363.a.11979.1.top
- g2c.440509.a.440509.1.bottom
- g2c.450.a.2700.1.top
- g2c.529.a.529.1.top
- g2c.587.a.587.1.top
- g2c.841.a.841.1.top
- g2c.976.a.999424.1.bottom
- g2c.all_rational_points
- g2c.analytic_rank
- g2c.conductor
- g2c.galois_rep.non_maximal_primes
- g2c.gl2type
- g2c.good_reduction
- g2c.has_square_sha
- g2c.invariants
- g2c.isogeny_class
- g2c.jacobian
- g2c.lfunction
- g2c.local_invariants
- g2c.maximal_galois_rep
- g2c.mw_generator
- g2c.real_period
- g2c.simple_equation
- g2c.st_group
- g2c.st_group_identity_component
- g2c.tamagawa
- g2c.torsion_order
- modcurve.decomposition
- modcurve.gassmann_class
- modcurve.genus_minus_rank
- modcurve.newform_level
- modcurve.rank
- modcurve.rational_points
- modcurve.simple
- rcs.rigor.av.fq
- rcs.source.curve.highergenus.aut
- rcs.source.g2c
- st_group.degree
- lmfdb/abvar/fq/main.py (line 402)
- lmfdb/abvar/fq/main.py (line 663)
- lmfdb/abvar/fq/stats.py (line 52)
- lmfdb/abvar/fq/stats.py (lines 131-136)
- lmfdb/abvar/fq/templates/show-abvarfq.html (lines 152-172)
- lmfdb/cluster_pictures/web_cluster_picture.py (line 32)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-show-passport.html (line 31)
- lmfdb/modular_curves/templates/modcurve.html (line 139)
- 2022-03-26 16:16:32 by Bjorn Poonen (Reviewed)
- 2022-03-26 16:10:54 by Bjorn Poonen
- 2022-03-24 16:30:18 by Bjorn Poonen
- 2017-05-31 04:29:14 by Christelle Vincent (Reviewed)