The endomorphism algebra of an abelian variety $A$ is the $\Q$-algebra $\textrm{End}(A)\otimes\Q$, where $\textrm{End}(A)$ is the endomorphism ring of $A$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Voight on 2020-09-26 15:12:45
Referred to by:
History:
(expand/hide all)
- ag.complex_multiplication
- ag.real_multiplication
- columns.av_fq_isog.center_dim
- columns.av_fq_isog.geometric_center_dim
- columns.av_fq_isog.geometric_extension_degree
- columns.av_fq_isog.max_divalg_dim
- g2c.end_alg
- g2c.gl2type
- g2c.jac_endomorphisms
- st_group.second_trace_moment
- lmfdb/abvar/fq/templates/show-abvarfq.html (line 177)
- lmfdb/elliptic_curves/elliptic_curve.py (line 438)
- 2020-09-26 15:12:45 by John Voight (Reviewed)
- 2020-09-26 15:12:16 by John Voight
- 2015-08-03 16:23:44 by Andrew Sutherland (Reviewed)