The dimension of an algebraic variety $V$ is the maximal length $d$ of a chain $$ V_0 \subset V_1 \subset \cdots \subset V_d $$ of distinct irreducible subvarieties of $V$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Bjorn Poonen on 2022-03-24 16:13:04
Referred to by:
History:
(expand/hide all)
- ag.abelian_surface
- ag.affine_space
- ag.complex_multiplication
- ag.mordell_weil
- ag.projective_space
- av.fq.l-polynomial
- av.fq.newton_elevation
- av.fq.ordinary
- av.fq.weil_polynomial
- av.theta_divisor
- columns.av_fq_isog.g
- columns.av_fq_isog.real_poly
- columns.av_fq_isog.twist_count
- g2c.real_period
- modcurve.decomposition
- modcurve.modular_cover
- st_group.component_group
- st_group.definition
- st_group.degree
- lmfdb/abvar/fq/main.py (line 206)
- lmfdb/abvar/fq/main.py (line 653)
- lmfdb/abvar/fq/stats.py (line 39)
- lmfdb/abvar/fq/templates/abvarfq-index.html (line 13)
- lmfdb/abvar/fq/templates/show-abvarfq.html (line 17)
- 2022-03-24 16:13:04 by Bjorn Poonen (Reviewed)
- 2018-08-20 15:01:45 by David Farmer (Reviewed)