The genus of a smooth projective curve $C$ defined over a field $k$ is the dimension of the $k$-vector space of regular differentials $H^0 (C, \omega_C)$. When $k=\C$ this coincides with the topological genus of the corresponding Riemann surface.
The quantity defined above is sometimes also called the algebraic genus or the geometric genus of $C$. Because of our assumption on the smoothness of $C$, it coincides with the arithmetic genus $H^1 (C,\mathcal{O}_C) - H^0 (C,\mathcal{O}_C) + 1$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Andrew Sutherland on 2018-06-21 23:05:03
Referred to by:
History:
(expand/hide all)
- ag.abelian_surface
- ag.hyperelliptic_curve
- av.theta_divisor
- dq.av.fq.reliability
- ec
- g2c.324.a.648.1.top
- g2c.geometric_invariants
- g2c.locally_solvable
- g2c.num_rat_pts
- g2c.num_rat_wpts
- g2c.real_period
- rcs.rigor.av.fq
- lmfdb/elliptic_curves/templates/ec-index.html (line 7)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-index.html (line 29)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-index.html (line 70)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-search.html (line 12)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-search.html (line 142)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-show-family.html (line 13)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-show-passport.html (lines 11-12)
- 2018-06-21 23:05:03 by Andrew Sutherland (Reviewed)