The genus of a smooth projective geometrically integral curve $C$ defined over a field $k$ is the dimension of the $k$-vector space of regular differentials $H^0(C, \omega_C)$. When $k=\C$ this coincides with the topological genus of the corresponding Riemann surface.
The quantity defined above is sometimes also called the algebraic genus or the geometric genus of $C$. Because of our assumption on the smoothness of $C$, it coincides with the arithmetic genus $H^1(C,\mathcal{O}_C)$.
Knowl status:
- Review status: reviewed
- Last edited by Bjorn Poonen on 2022-03-24 16:16:51
Referred to by:
History:
(expand/hide all)
- ag.abelian_surface
- ag.canonical_model
- ag.hyperelliptic_curve
- ag.minimal_field
- av.theta_divisor
- curve.highergenus.aut.characters
- curve.highergenus.aut.quotientgenus
- ec
- g2c.169.a.169.1.top
- g2c.25913.a.25913.1.bottom
- g2c.2916.b.11664.1.bottom
- g2c.324.a.648.1.top
- g2c.3319.a.3319.1.bottom
- g2c.440509.a.440509.1.bottom
- g2c.all_rational_points
- g2c.geometric_invariants
- g2c.has_square_sha
- g2c.locally_solvable
- g2c.minimal_equation
- g2c.num_rat_pts
- g2c.num_rat_wpts
- g2c.real_period
- rcs.rigor.av.fq
- lmfdb/higher_genus_w_automorphisms/main.py (line 614)
- lmfdb/higher_genus_w_automorphisms/main.py (line 1284)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-index.html (line 17)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-show-family.html (line 11)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-show-passport.html (line 10)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-stats.html (line 18)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-stats.html (line 75)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-stats.html (line 111)
- lmfdb/higher_genus_w_automorphisms/templates/hgcwa-stats.html (line 147)
- 2022-03-24 16:16:51 by Bjorn Poonen (Reviewed)
- 2018-06-21 23:05:03 by Andrew Sutherland (Reviewed)