The base field, of an algebraic variety is the field over which it is defined; it necessarily contains the coefficients of a set of defining equations for the variety, but it is not necessarily a minimal field of definition.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Andrew Sutherland on 2020-10-10 14:53:13
Referred to by:
History:
(expand/hide all)
- ag.base_change
- ag.fq.point_counts
- ag.splitting_field
- av.fq.curve_point_counts
- av.fq.frobenius_angles
- av.fq.galois_group
- av.fq.l-polynomial
- av.fq.number_field
- av.fq.ordinary
- av.fq.supersingular
- av.fq.weil_polynomial
- columns.av_fq_isog.p
- columns.av_fq_isog.q
- columns.av_fq_isog.twist_count
- ec.isogeny
- g2c.geom_iso_class
- g2c.jac_endomorphisms
- rcs.source.ec
- lmfdb/abvar/fq/main.py (line 182)
- lmfdb/abvar/fq/main.py (line 190)
- lmfdb/abvar/fq/main.py (lines 627-628)
- lmfdb/abvar/fq/stats.py (line 38)
- lmfdb/abvar/fq/templates/abvarfq-index.html (line 16)
- lmfdb/abvar/fq/templates/show-abvarfq.html (line 16)
- lmfdb/ecnf/main.py (line 725)
- lmfdb/ecnf/templates/ecnf-curve.html (line 32)
- 2020-10-10 14:53:13 by Andrew Sutherland (Reviewed)
- 2020-10-10 14:22:59 by Andrew Sutherland
- 2020-10-10 14:15:46 by Andrew Sutherland
- 2017-05-24 05:28:16 by Christelle Vincent