The field of definition, or base field, of an algebraic variety is essentially the field to which the coefficients of the polynomials defining the variety belong.
Authors:
Knowl status:
- Review status: beta
- Last edited by Christelle Vincent on 2017-05-24 05:28:16
Referred to by:
History:
(expand/hide all)
- ag.base_change
- ag.fq.point_counts
- ag.splitting_field
- av.fq.curve_point_counts
- av.fq.frobenius_angles
- av.fq.galois_group
- av.fq.l-polynomial
- av.fq.number_field
- av.fq.ordinary
- av.fq.supersingular
- av.fq.weil_polynomial
- ec.isogeny
- g2c.geom_iso_class
- lmfdb/abvar/fq/main.py (line 185)
- lmfdb/abvar/fq/main.py (line 193)
- lmfdb/abvar/fq/stats.py (line 37)
- lmfdb/abvar/fq/templates/abvarfq-index.html (line 26)
- lmfdb/abvar/fq/templates/abvarfq-search-results.html (line 22)
- lmfdb/abvar/fq/templates/show-abvarfq.html (line 9)