Formats: - HTML - YAML - JSON - 2025-11-12T07:11:09.404359
Query: /api/gps_groups/?_offset=0
Show schema

{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '32.21', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': None, 'aut_cyclic': None, 'aut_derived_length': None, 'aut_exponent': None, 'aut_gen_orders': None, 'aut_gens': [[1, 4, 48, 576], [3, 20, 240, 576], [25, 20, 48, 576], [289, 20, 48, 1152], [1, 6, 48, 1152], [1, 28, 48, 576], [1, 308, 240, 576], [1, 20, 242, 1152], [1, 20, 264, 1152], [1, 20, 528, 1152], [1, 20, 48, 576], [1, 4, 240, 576], [1, 4, 48, 1152], [17, 4, 48, 576], [1, 196, 48, 576], [1, 4, 624, 576]], 'aut_group': '13824.kv', 'aut_hash': None, 'aut_nilpotency_class': None, 'aut_nilpotent': None, 'aut_order': 110592, 'aut_permdeg': None, 'aut_perms': None, 'aut_phi_ratio': 192.0, 'aut_solvable': None, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [3, 2, 1, 3], [3, 4, 1, 3], [3, 8, 1, 1], [4, 6, 4, 3], [4, 9, 8, 1], [4, 18, 4, 2], [4, 54, 4, 1], [6, 2, 1, 21], [6, 4, 1, 21], [6, 8, 1, 7], [12, 6, 8, 2], [12, 12, 4, 4], [12, 12, 8, 3], [12, 18, 8, 1], [12, 36, 4, 2]], 'aut_supersolvable': None, 'aut_tex': 'C_6^2:(D_4\\times \\GL(2,3))', 'autcent_abelian': None, 'autcent_cyclic': None, 'autcent_exponent': None, 'autcent_group': None, 'autcent_hash': None, 'autcent_nilpotent': None, 'autcent_order': None, 'autcent_solvable': None, 'autcent_split': None, 'autcent_supersolvable': None, 'autcent_tex': None, 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': None, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': [[1, 1, 1], [2, 1, 7], [3, 2, 3], [3, 4, 3], [3, 8, 1], [4, 6, 12], [4, 9, 8], [4, 18, 8], [4, 54, 4], [6, 2, 21], [6, 4, 21], [6, 8, 7], [12, 6, 16], [12, 12, 40], [12, 18, 8], [12, 36, 8]], 'center_label': '8.5', 'center_order': 8, 'central_product': False, 'central_quotient': '216.162', 'commutator_count': 1, 'commutator_label': '54.15', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 9, 'conjugacy_classes_known': True, 'counter': 22767, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [3, 2, 1, 3], [3, 4, 1, 3], [3, 8, 1, 1], [4, 6, 1, 4], [4, 6, 2, 4], [4, 9, 2, 4], [4, 18, 2, 4], [4, 54, 2, 2], [6, 2, 1, 21], [6, 4, 1, 21], [6, 8, 1, 7], [12, 6, 2, 4], [12, 6, 4, 2], [12, 12, 1, 4], [12, 12, 2, 14], [12, 12, 4, 2], [12, 18, 2, 4], [12, 36, 2, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 10752, 'exponent': 12, 'exponents_of_order': [6, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '8.5', 'frattini_quotient': '216.162', 'hash': 22767, 'hyperelementary': 1, 'id': 232045, 'inner_abelian': None, 'inner_cyclic': None, 'inner_exponent': None, 'inner_gen_orders': [2, 6, 6, 3], 'inner_gens': [[1, 308, 48, 576], [321, 4, 528, 576], [1, 100, 48, 1152], [1, 4, 1200, 576]], 'inner_hash': None, 'inner_nilpotent': None, 'inner_order': 216, 'inner_split': None, 'inner_tex': 'S_3^3', 'inner_used': None, 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 32], [2, 72], [4, 56], [8, 8]], 'label': '1728.22767', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^3.S3^3', 'ngens': 9, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 83, 'number_characteristic_subgroups': 158, 'number_conjugacy_classes': 168, 'number_divisions': 116, 'number_normal_subgroups': 264, 'number_subgroup_autclasses': 750, 'number_subgroup_classes': 1106, 'number_subgroups': 6420, 'old_label': None, 'order': 1728, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 7], [3, 26], [4, 504], [6, 182], [12, 1008]], 'outer_abelian': None, 'outer_cyclic': None, 'outer_equivalence': False, 'outer_exponent': None, 'outer_gen_orders': None, 'outer_gen_pows': None, 'outer_gens': None, 'outer_group': '512.10494213', 'outer_hash': None, 'outer_nilpotent': None, 'outer_order': 512, 'outer_permdeg': None, 'outer_perms': None, 'outer_solvable': None, 'outer_supersolvable': None, 'outer_tex': 'C_2^9', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 21, 'pgroup': 0, 'primary_abelian_invariants': [2, 4, 4], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 36], [4, 48], [8, 24]], 'representations': {'PC': {'code': 3701051189634223562405558612405258637906625792104979, 'gens': [1, 3, 6, 9], 'pres': [9, -2, -2, -2, -2, -3, -2, -2, -3, -3, 18, 8318, 74, 1443, 102, 1444, 7151, 158, 7584, 186, 6937, 1997]}, 'Perm': {'d': 21, 'gens': [2446418218101580809, 2452841614229534769, 374525, 5160, 87657292816, 16, 5243564987781120000, 3991680, 7664017935974400000]}}, 'schur_multiplier': [2, 2, 4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4, 4], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^3.S_3^3', 'transitive_degree': 192, 'wreath_data': None, 'wreath_product': False}