Formats: - HTML - YAML - JSON - 2025-11-12T22:01:14.144389
Query: /api/gps_groups/?_offset=0
Show schema

{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '18.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 2, 3, 3, 3, 2, 2], 'aut_gens': [[1, 6, 36], [1, 30, 36], [145, 6, 180], [5, 30, 54], [1, 114, 162], [145, 6, 36], [25, 6, 36], [109, 6, 36], [19, 6, 36]], 'aut_group': '864.4673', 'aut_hash': 4673, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 864, 'aut_permdeg': 10, 'aut_perms': [368040, 374400, 5, 4, 1617960, 1547400, 7, 23], 'aut_phi_ratio': 12.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 3, 1, 2], [2, 9, 1, 1], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [3, 4, 6, 1], [3, 8, 6, 1], [6, 3, 2, 2], [6, 6, 1, 1], [6, 6, 2, 1], [6, 9, 2, 1], [6, 12, 6, 1]], 'aut_supersolvable': False, 'aut_tex': 'S_4\\times S_3^2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '144.183', 'autcentquo_hash': 183, 'autcentquo_nilpotent': False, 'autcentquo_order': 144, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_3\\times S_4', 'cc_stats': [[1, 1, 1], [2, 3, 2], [2, 9, 1], [3, 1, 2], [3, 2, 3], [3, 4, 6], [3, 8, 6], [6, 3, 4], [6, 6, 3], [6, 9, 2], [6, 12, 6]], 'center_label': '3.1', 'center_order': 3, 'central_product': True, 'central_quotient': '72.44', 'commutator_count': 1, 'commutator_label': '12.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 166, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['12.3', 1], ['3.1', 1], ['6.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 3, 1, 2], [2, 9, 1, 1], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [3, 4, 2, 3], [3, 8, 2, 3], [6, 3, 2, 2], [6, 6, 1, 1], [6, 6, 2, 1], [6, 9, 2, 1], [6, 12, 2, 3]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 12, 'exponent': 6, 'exponents_of_order': [3, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[6, 0, 2]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '216.166', 'hash': 166, 'hyperelementary': 1, 'id': 143535, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [6, 2, 6], 'inner_gens': [[1, 132, 198], [127, 6, 36], [91, 6, 36]], 'inner_hash': 44, 'inner_nilpotent': False, 'inner_order': 72, 'inner_split': True, 'inner_tex': 'S_3\\times A_4', 'inner_used': [1, 2, 3], 'irrC_degree': 6, 'irrQ_degree': 12, 'irrQ_dim': 12, 'irrR_degree': 12, 'irrep_stats': [[1, 18], [2, 9], [3, 6], [6, 3]], 'label': '216.166', 'linC_count': 48, 'linC_degree': 5, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 7, 'linQ_degree_count': 18, 'linQ_dim': 7, 'linQ_dim_count': 18, 'linR_count': 18, 'linR_degree': 7, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C6^2:C6', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 15, 'number_characteristic_subgroups': 15, 'number_conjugacy_classes': 36, 'number_divisions': 21, 'number_normal_subgroups': 24, 'number_subgroup_autclasses': 57, 'number_subgroup_classes': 81, 'number_subgroups': 308, 'old_label': None, 'order': 216, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 15], [3, 80], [6, 120]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [0, 0], 'outer_gens': [[5, 6, 54], [17, 30, 54]], 'outer_group': '12.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 12, 'outer_permdeg': 5, 'outer_perms': [7, 31], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_6', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 10, 'pgroup': 0, 'primary_abelian_invariants': [2, 3, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 9], [3, 2], [4, 4], [6, 3], [12, 1]], 'representations': {'PC': {'code': 41247885102710893975033173, 'gens': [1, 3, 5], 'pres': [6, 2, 3, 2, 3, 2, 3, 12, 2378, 1034, 50, 5944, 2440, 88, 5189]}, 'GLFq': {'d': 4, 'q': 4, 'gens': [1083311105, 1118981568, 2149582850, 1087570945, 2298447435, 39897281]}, 'Perm': {'d': 10, 'gens': [374400, 4, 856920, 7, 16, 1210440]}}, 'schur_multiplier': [6], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 6], 'solvability_type': 8, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_6^2:C_6', 'transitive_degree': 24, 'wreath_data': None, 'wreath_product': False}