# Curves in abelian variety isogeny class 2.97.au_li, downloaded from the LMFDB on 27 October 2025. y^2=59*x^6+39*x^5+89*x^3+28*x+84 y^2=89*x^6+36*x^5+78*x^4+53*x^3+94*x^2+17*x+52 y^2=29*x^6+74*x^5+89*x^4+52*x^3+46*x^2+86*x+40 y^2=24*x^6+30*x^5+68*x^4+43*x^3+2*x^2+46*x+78 y^2=60*x^6+63*x^5+8*x^4+55*x^3+8*x^2+63*x+60 y^2=77*x^6+63*x^5+45*x^4+23*x^3+45*x^2+63*x+77 y^2=77*x^6+26*x^5+52*x^4+2*x^3+48*x^2+35*x+66 y^2=35*x^6+67*x^5+42*x^4+47*x^3+63*x^2+52*x+78 y^2=49*x^6+44*x^5+x^4+12*x^3+76*x^2+71*x+75 y^2=96*x^6+12*x^5+39*x^4+33*x^3+34*x^2+56*x+49 y^2=52*x^6+58*x^5+64*x^4+39*x^3+64*x^2+58*x+52 y^2=12*x^6+69*x^5+44*x^4+x^2+7*x+33 y^2=82*x^5+7*x^3+28*x^2+38*x+6 y^2=22*x^6+20*x^5+31*x^4+83*x^3+42*x^2+x+24 y^2=65*x^6+91*x^5+85*x^4+70*x^3+36*x^2+43*x+88 y^2=24*x^6+63*x^5+58*x^4+54*x^3+13*x^2+7*x+53 y^2=5*x^6+58*x^3+60 y^2=94*x^6+65*x^5+58*x^4+40*x^3+58*x^2+65*x+94 y^2=45*x^6+96*x^5+76*x^4+81*x^3+22*x^2+82*x+61 y^2=79*x^6+16*x^5+60*x^4+51*x^3+47*x^2+57*x+37 y^2=63*x^6+36*x^5+77*x^4+51*x^3+85*x^2+15*x+61 y^2=48*x^6+5*x^5+43*x^4+79*x^3+43*x^2+5*x+48 y^2=30*x^6+61*x^5+61*x^4+70*x^3+87*x^2+74*x+18 y^2=68*x^6+56*x^4+56*x^2+68 y^2=25*x^6+51*x^5+67*x^4+37*x^3+26*x^2+59*x+6 y^2=10*x^6+38*x^5+46*x^4+95*x^3+79*x^2+55*x+49 y^2=19*x^6+8*x^5+3*x^4+13*x^3+3*x^2+8*x+19 y^2=59*x^6+54*x^5+96*x^4+49*x^3+53*x^2+75*x+92 y^2=14*x^6+61*x^5+28*x^4+77*x^3+76*x^2+4*x+82 y^2=94*x^6+75*x^5+67*x^4+91*x^3+92*x^2+91*x+66 y^2=57*x^6+7*x^5+3*x^4+89*x^3+76*x^2+2*x+86 y^2=13*x^6+84*x^5+12*x^4+67*x^3+57*x^2+30*x+66 y^2=36*x^6+59*x^5+13*x^4+82*x^3+25*x^2+96*x+20 y^2=18*x^6+64*x^5+7*x^4+61*x^3+35*x^2+52*x+84 y^2=56*x^6+40*x^5+79*x^4+58*x^3+79*x^2+40*x+56 y^2=25*x^6+39*x^5+52*x^4+32*x^3+77*x^2+11*x+8 y^2=29*x^6+6*x^5+31*x^4+65*x^3+4*x^2+75*x+16 y^2=70*x^6+46*x^5+21*x^4+96*x^3+23*x^2+15*x+73 y^2=28*x^6+57*x^5+39*x^4+93*x^3+22*x^2+13*x+87 y^2=8*x^6+61*x^5+23*x^4+30*x^3+21*x^2+36*x+18 y^2=45*x^6+36*x^5+83*x^4+17*x^3+8*x^2+22*x+57 y^2=5*x^6+5*x^3+68 y^2=63*x^6+85*x^5+21*x^4+17*x^3+21*x^2+85*x+63 y^2=22*x^6+64*x^5+79*x^4+13*x^3+40*x^2+69*x+67 y^2=16*x^6+31*x^5+32*x^4+53*x^3+22*x^2+12*x+95 y^2=37*x^6+68*x^5+12*x^4+92*x^3+94*x^2+44*x+21 y^2=46*x^6+20*x^5+80*x^4+47*x^3+80*x^2+20*x+46 y^2=56*x^6+23*x^5+26*x^4+57*x^3+47*x^2+2*x+13 y^2=57*x^6+14*x^4+14*x^2+57 y^2=68*x^6+86*x^5+84*x^4+35*x^3+38*x^2+65*x+37 y^2=x^5+96*x y^2=86*x^6+27*x^5+60*x^4+71*x^3+74*x^2+11*x+88 y^2=17*x^6+44*x^5+28*x^4+33*x^3+24*x^2+6*x+41 y^2=69*x^6+65*x^5+83*x^4+89*x^3+28*x^2+66*x+30 y^2=65*x^6+71*x^4+71*x^2+65 y^2=9*x^6+63*x^5+52*x^4+32*x^3+69*x^2+55*x+48 y^2=5*x^6+52*x^3+41 y^2=73*x^5+48*x^4+47*x^3+50*x^2+75*x y^2=80*x^6+38*x^5+31*x^4+57*x^3+81*x^2+79*x+78 y^2=74*x^6+86*x^5+22*x^4+20*x^3+54*x^2+66*x+83 y^2=68*x^6+3*x^5+21*x^4+80*x^3+89*x^2+41*x+28 y^2=94*x^6+23*x^4+23*x^2+94 y^2=20*x^6+36*x^5+87*x^4+72*x^3+2*x^2+63*x+30 y^2=36*x^6+54*x^4+54*x^2+36 y^2=15*x^6+54*x^5+27*x^4+5*x^3+18*x^2+8*x+59 y^2=85*x^6+44*x^5+21*x^4+75*x^3+51*x^2+18*x+75 y^2=5*x^6+67*x^3+84 y^2=38*x^6+61*x^5+58*x^4+5*x^3+58*x^2+61*x+38 y^2=87*x^6+26*x^5+92*x^4+34*x^3+11*x^2+24*x+4 y^2=94*x^6+49*x^5+16*x^3+86*x+95 y^2=78*x^6+68*x^5+38*x^4+34*x^3+38*x^2+4*x+55 y^2=37*x^6+64*x^5+94*x^4+15*x^3+94*x^2+64*x+37 y^2=24*x^6+95*x^5+48*x^4+76*x^3+68*x^2+93*x+66 y^2=5*x^6+5*x^3+41 y^2=52*x^6+4*x^5+17*x^4+48*x^3+39*x^2+62*x+46 y^2=80*x^6+66*x^5+86*x^4+27*x^3+2*x^2+45*x+69 y^2=55*x^6+70*x^5+29*x^4+42*x^3+70*x^2+25*x+11 y^2=37*x^6+71*x^5+41*x^4+79*x^3+27*x^2+24*x+20 y^2=76*x^6+56*x^5+39*x^4+10*x^3+67*x^2+81*x+82 y^2=88*x^6+11*x^5+30*x^4+52*x^3+30*x^2+11*x+88 y^2=5*x^6+5*x^3+13 y^2=5*x^6+30*x^3+13 y^2=62*x^6+75*x^5+12*x^4+7*x^3+85*x^2+75*x+35 y^2=20*x^6+44*x^5+54*x^4+47*x^3+23*x^2+20*x+3 y^2=34*x^6+20*x^5+65*x^4+56*x^3+x^2+7*x+72 y^2=10*x^6+26*x^5+60*x^4+6*x^3+21*x^2+50*x+94 y^2=24*x^6+30*x^5+59*x^4+41*x^3+54*x^2+62*x+84 y^2=23*x^6+85*x^5+46*x^4+71*x^3+60*x^2+72*x+14 y^2=29*x^6+74*x^5+69*x^4+48*x^3+83*x^2+67*x+40 y^2=40*x^6+88*x^5+30*x^4+5*x^3+78*x^2+9*x+90 y^2=16*x^6+11*x^5+33*x^4+38*x^3+88*x^2+89*x+16 y^2=38*x^6+71*x^5+92*x^4+59*x^3+79*x^2+79*x+78 y^2=5*x^6+46*x^3+60 y^2=91*x^6+18*x^5+77*x^4+42*x^3+84*x^2+11*x+93 y^2=55*x^6+79*x^5+93*x^4+44*x^3+93*x^2+79*x+55 y^2=57*x^6+42*x^5+2*x^4+95*x^3+35*x^2+10*x+92 y^2=96*x^6+85*x^5+37*x^4+89*x^3+6*x^2+33*x+48 y^2=65*x^6+x^5+49*x^4+7*x^3+8*x^2+29*x+91 y^2=87*x^6+60*x^5+16*x^4+84*x^3+49*x^2+55*x+76 y^2=30*x^6+91*x^5+91*x^3+39*x^2+51*x+86 y^2=84*x^6+96*x^5+86*x^4+35*x^3+10*x^2+38*x+67 y^2=56*x^6+26*x^5+93*x^4+68*x^3+60*x^2+58*x+15 y^2=39*x^6+49*x^5+37*x^4+46*x^3+2*x^2+7*x+46 y^2=71*x^6+87*x^5+7*x^4+57*x^3+92*x^2+88*x+13 y^2=55*x^6+40*x^5+53*x^4+25*x^3+53*x^2+40*x+55 y^2=60*x^6+31*x^4+31*x^2+60 y^2=59*x^6+21*x^5+90*x^4+27*x^3+41*x^2+83*x+41 y^2=48*x^6+6*x^5+17*x^4+34*x^3+75*x^2+70*x+80 y^2=65*x^6+6*x^4+6*x^2+65 y^2=34*x^6+38*x^5+66*x^4+75*x^3+24*x^2+90*x+20 y^2=30*x^6+72*x^5+47*x^4+43*x^3+30*x^2+93*x+88 y^2=68*x^6+65*x^5+58*x^4+69*x^3+10*x^2+85*x+21