# Curves in abelian variety isogeny class 2.41.aj_ct, downloaded from the LMFDB on 25 September 2025. y^2=36*x^5+40 y^2=27*x^6+14*x^5+25*x^4+30*x^3+9*x^2+30*x+34 y^2=6*x^6+15*x^5+37*x^4+6*x^3+30*x^2+7*x+24 y^2=40*x^6+24*x^5+11*x^4+33*x^3+2*x^2+19*x+13 y^2=17*x^6+12*x^5+5*x^4+14*x^3+29*x^2+25*x+19 y^2=35*x^6+8*x^5+26*x^4+8*x^3+16*x^2+27*x+17 y^2=32*x^6+32*x^5+12*x^4+2*x^2+30*x+4 y^2=26*x^6+36*x^5+15*x^4+13*x^3+17*x+22 y^2=22*x^6+2*x^5+28*x^4+32*x^3+3*x^2+37*x+7 y^2=26*x^5+14*x^4+22*x^2+26*x+22 y^2=18*x^6+34*x^5+16*x^4+26*x^3+37*x^2+26*x+23 y^2=35*x^6+17*x^5+31*x^4+20*x^3+22*x^2+15*x+29 y^2=40*x^6+16*x^5+40*x^4+33*x^3+11*x^2+2*x+37 y^2=15*x^6+8*x^5+27*x^4+34*x^3+39*x^2+19*x+38 y^2=29*x^6+39*x^5+33*x^4+15*x^3+38*x^2+32*x+28 y^2=29*x^6+11*x^5+12*x^4+35*x^3+33*x^2+10*x+29 y^2=9*x^6+19*x^5+13*x^4+39*x^3+4*x^2+36*x+9 y^2=34*x^6+17*x^5+36*x^4+19*x^3+7*x^2+40*x+30 y^2=22*x^6+19*x^5+23*x^4+36*x^3+17*x^2+6*x+33 y^2=15*x^6+10*x^5+20*x^4+22*x^3+20*x^2+26*x+13 y^2=13*x^6+35*x^4+15*x^3+18*x^2+26*x+30 y^2=23*x^6+11*x^5+4*x^4+26*x^3+20*x^2+11*x+29 y^2=23*x^6+20*x^5+7*x^4+16*x^3+8*x^2+16*x+27 y^2=33*x^6+17*x^5+24*x^4+17*x^2+21*x+5 y^2=9*x^6+8*x^5+3*x^4+8*x^3+28*x^2+24*x+29 y^2=39*x^6+27*x^5+x^4+12*x^3+10*x+36 y^2=30*x^6+9*x^5+24*x^3+11*x^2+37*x+25 y^2=9*x^6+6*x^5+15*x^4+5*x^3+22*x^2+14*x+20 y^2=6*x^6+27*x^5+31*x^4+17*x^3+23*x^2+13*x+13 y^2=25*x^6+20*x^5+30*x^4+2*x^3+37*x^2+25*x+12 y^2=7*x^6+35*x^5+8*x^4+20*x^3+37*x^2+13*x+30 y^2=14*x^6+12*x^5+19*x^4+23*x^3+26*x+27 y^2=27*x^6+25*x^5+20*x^4+3*x^3+32*x^2+9*x+40 y^2=30*x^6+17*x^5+13*x^4+16*x^3+10*x^2+39*x+5 y^2=34*x^6+33*x^5+16*x^4+33*x^3+11*x^2+27*x+35 y^2=35*x^6+8*x^5+39*x^4+3*x^3+16*x^2+8*x+35 y^2=3*x^6+8*x^5+17*x^4+18*x^3+32*x^2+3 y^2=9*x^6+19*x^5+37*x^4+10*x^3+13*x^2+34*x+14 y^2=16*x^6+4*x^5+31*x^4+36*x^3+7*x^2+32*x+3 y^2=34*x^6+16*x^5+20*x^4+15*x^3+39*x^2+26*x+3 y^2=21*x^6+18*x^5+27*x^4+6*x^3+11*x^2+8*x+25 y^2=32*x^6+2*x^5+6*x^4+12*x^3+3*x y^2=23*x^6+12*x^5+34*x^4+19*x^3+5*x^2+33*x+12 y^2=4*x^6+9*x^5+34*x^4+38*x^3+21*x^2+20*x+11 y^2=20*x^6+18*x^5+27*x^4+8*x^3+23*x^2+28*x+28 y^2=34*x^6+3*x^5+24*x^4+20*x^3+30*x^2+34 y^2=35*x^6+5*x^5+11*x^4+8*x^3+29*x+9 y^2=5*x^6+12*x^5+6*x^4+9*x^3+24*x^2+20 y^2=14*x^6+32*x^5+17*x^4+9*x^3+36*x^2+9*x+27 y^2=13*x^6+16*x^5+14*x^4+26*x^3+29*x^2+28*x+4 y^2=13*x^6+11*x^5+31*x^4+35*x^3+40*x^2+19*x+21 y^2=23*x^6+34*x^5+33*x^4+36*x^2+7*x+12 y^2=25*x^6+x^5+4*x^4+21*x^3+39*x^2+8*x+31 y^2=29*x^6+36*x^5+14*x^4+31*x^3+16*x^2+39*x+21 y^2=19*x^6+24*x^5+26*x^3+22*x^2+29*x+15 y^2=16*x^6+4*x^5+4*x^4+19*x^3+10*x^2+16*x+40 y^2=24*x^6+2*x^5+12*x^4+5*x^3+25*x^2+4*x+20 y^2=35*x^6+5*x^5+33*x^4+24*x^3+2*x^2+x y^2=11*x^6+2*x^5+35*x^4+37*x^3+22*x^2+6*x+15 y^2=26*x^6+18*x^5+18*x^4+23*x^3+11*x^2+19*x+19 y^2=33*x^6+21*x^5+34*x^4+18*x^3+26*x^2+11*x+27 y^2=11*x^6+31*x^4+23*x^2+24*x+17 y^2=29*x^6+8*x^5+32*x^4+21*x^3+3*x^2+6*x+35 y^2=28*x^6+39*x^5+29*x^3+17*x^2+17*x+26 y^2=18*x^6+7*x^5+23*x^4+13*x^3+26*x^2+24*x+36 y^2=10*x^6+33*x^5+6*x^4+14*x^3+2*x^2+7*x+22 y^2=27*x^6+18*x^5+33*x^4+21*x^3+25*x^2+10*x+12 y^2=27*x^6+17*x^5+40*x^4+19*x^3+23*x^2+18*x+15 y^2=18*x^6+36*x^5+37*x^4+33*x^3+x^2+27*x+6