# Curves in abelian variety isogeny class 2.107.ac_afc, downloaded from the LMFDB on 29 May 2022. y^2=78*x^6+20*x^5+104*x^4+24*x^3+52*x^2+44*x+30 y^2=2*x^6+7*x^5+72*x^4+51*x^3+10*x^2+80*x+84 y^2=80*x^6+89*x^5+37*x^4+x^3+20*x^2+7*x+17 y^2=32*x^6+20*x^5+6*x^4+52*x^3+14*x^2+67*x+15 y^2=17*x^6+84*x^5+2*x^4+3*x^3+37*x^2+30*x+95 y^2=54*x^6+74*x^5+103*x^4+91*x^3+23*x^2+58*x+34 y^2=65*x^6+59*x^5+26*x^4+104*x^3+25*x^2+41*x+15 y^2=54*x^6+66*x^5+38*x^4+10*x^3+31*x^2+40*x+60 y^2=94*x^6+24*x^5+44*x^4+86*x^3+27*x^2+7*x+100 y^2=63*x^6+17*x^5+67*x^4+6*x^3+52*x^2+43*x+4 y^2=23*x^6+77*x^5+25*x^4+61*x^3+103*x^2+45*x+31 y^2=71*x^6+61*x^5+8*x^4+11*x^3+52*x^2+x+104 y^2=94*x^6+94*x^5+49*x^4+85*x^3+59*x^2+14*x+101 y^2=57*x^6+72*x^5+92*x^4+77*x^3+97*x^2+9*x+58 y^2=50*x^6+48*x^5+33*x^4+41*x^3+90*x^2+89*x+67 y^2=83*x^6+53*x^5+86*x^4+16*x^3+6*x^2+37*x+26 y^2=15*x^6+11*x^5+87*x^4+88*x^3+60*x^2+52*x+2 y^2=x^6+33*x^5+28*x^4+67*x^3+29*x^2+6*x+82 y^2=10*x^6+96*x^5+33*x^3+7*x^2+65*x+56 y^2=101*x^6+48*x^5+70*x^4+98*x^3+86*x^2+73*x+12 y^2=55*x^6+17*x^5+32*x^4+75*x^3+71*x^2+15*x+28 y^2=100*x^6+48*x^5+97*x^4+101*x^3+65*x^2+80*x+26 y^2=6*x^6+25*x^5+13*x^4+9*x^3+41*x^2+92*x+6 y^2=16*x^6+62*x^5+77*x^4+79*x^3+17*x^2+5*x+72 y^2=85*x^6+87*x^5+18*x^4+105*x^3+35*x^2+99*x+91 y^2=9*x^6+30*x^5+7*x^4+52*x^3+73*x^2+101*x+34 y^2=58*x^6+6*x^5+12*x^4+37*x^3+52*x^2+67*x+61 y^2=76*x^6+11*x^5+7*x^4+70*x^3+50*x^2+101*x+78 y^2=67*x^6+92*x^5+47*x^4+102*x^3+50*x^2+36*x+18 y^2=102*x^6+38*x^5+61*x^4+20*x^3+99*x^2+91*x+98 y^2=104*x^6+106*x^5+13*x^4+56*x^3+56*x^2+106*x+69 y^2=57*x^6+10*x^5+21*x^4+65*x^3+25*x^2+100*x+67 y^2=67*x^6+7*x^5+45*x^4+89*x^3+80*x^2+90*x+39 y^2=10*x^6+27*x^5+81*x^4+105*x^3+64*x^2+90*x+30 y^2=36*x^6+17*x^5+19*x^4+80*x^3+35*x^2+31*x+51 y^2=85*x^6+68*x^5+39*x^4+61*x^3+66*x+1 y^2=7*x^6+104*x^5+32*x^4+85*x^3+95*x^2+83*x+72 y^2=12*x^6+83*x^5+31*x^4+20*x^3+61*x^2+3*x+28 y^2=91*x^6+86*x^5+52*x^4+9*x^3+81*x^2+95*x+39 y^2=87*x^6+33*x^5+64*x^4+35*x^3+74*x^2+32*x+99 y^2=78*x^6+83*x^5+93*x^4+41*x^3+19*x^2+52*x+81 y^2=3*x^6+104*x^5+48*x^4+16*x^3+106*x^2+82*x+26 y^2=58*x^6+39*x^5+40*x^4+13*x^3+4*x^2+52*x+40 y^2=24*x^6+56*x^5+48*x^4+57*x^3+101*x^2+32*x+45 y^2=93*x^6+56*x^5+102*x^4+46*x^3+34*x^2+41*x+26 y^2=11*x^6+76*x^5+4*x^4+14*x^3+60*x^2+10*x+38 y^2=78*x^6+38*x^5+91*x^4+14*x^3+4*x^2+98*x+31 y^2=76*x^6+44*x^5+65*x^4+22*x^3+91*x^2+98*x+101 y^2=102*x^6+47*x^5+104*x^4+35*x^3+97*x^2+62*x y^2=52*x^6+63*x^5+53*x^4+104*x^3+51*x^2+58*x+21 y^2=99*x^6+7*x^5+94*x^4+51*x^3+82*x^2+8*x+64 y^2=64*x^6+38*x^5+4*x^4+90*x^3+103*x^2+94*x+61 y^2=103*x^6+95*x^5+96*x^4+96*x^3+17*x^2+51*x+36 y^2=4*x^6+27*x^5+17*x^4+54*x^3+82*x^2+34*x+36 y^2=79*x^6+47*x^5+45*x^4+101*x^3+34*x^2+65*x+51 y^2=5*x^6+50*x^5+97*x^4+18*x^3+12*x^2+13*x+33 y^2=98*x^6+51*x^5+39*x^4+41*x^3+36*x^2+61*x+80 y^2=92*x^6+70*x^5+37*x^4+81*x^3+79*x^2+46*x+62 y^2=24*x^6+103*x^5+55*x^4+12*x^3+94*x^2+27*x+6 y^2=12*x^6+98*x^5+14*x^4+81*x^3+37*x^2+37*x+74 y^2=26*x^6+11*x^5+102*x^4+100*x^3+63*x^2+69*x+99 y^2=93*x^6+44*x^5+87*x^4+99*x^3+43*x^2+25*x+79 y^2=8*x^6+102*x^5+93*x^4+101*x^3+60*x^2+41*x+69 y^2=42*x^6+17*x^5+86*x^4+20*x^3+50*x^2+59*x+45 y^2=71*x^6+25*x^5+34*x^4+6*x^3+30*x^2+40*x+80 y^2=15*x^6+101*x^5+100*x^4+35*x^3+102*x^2+59*x+13 y^2=83*x^6+16*x^5+79*x^4+18*x^3+13*x^2+68*x+31 y^2=67*x^6+55*x^5+85*x^4+100*x^3+103*x^2+65*x+55 y^2=29*x^6+99*x^5+73*x^4+3*x^3+100*x^2+40*x+19 y^2=48*x^6+44*x^5+79*x^4+35*x^3+12*x^2+17*x+64 y^2=91*x^6+2*x^5+57*x^4+86*x^3+85*x^2+16*x+43 y^2=34*x^6+18*x^5+100*x^4+85*x^3+32*x^2+10*x+44 y^2=91*x^6+16*x^5+37*x^4+22*x^3+49*x^2+4*x+60 y^2=61*x^6+83*x^5+97*x^4+102*x^3+39*x^2+52*x+35 y^2=11*x^6+50*x^5+102*x^4+14*x^3+40*x^2+42*x+36 y^2=12*x^6+96*x^5+53*x^4+50*x^3+102*x^2+43*x+46 y^2=57*x^6+78*x^5+67*x^4+7*x^3+60*x^2+93*x+106 y^2=15*x^6+94*x^5+30*x^4+43*x^3+96*x^2+8*x+22 y^2=90*x^6+34*x^5+42*x^4+17*x^3+5*x^2+85*x+43 y^2=19*x^6+12*x^5+99*x^4+29*x^3+16*x^2+26*x+103 y^2=93*x^6+20*x^5+97*x^4+x^3+83*x^2+26*x+28 y^2=89*x^6+23*x^5+81*x^4+99*x^3+76*x^2+16*x+31 y^2=9*x^6+41*x^5+51*x^4+104*x^3+69*x^2+46*x+44 y^2=105*x^6+106*x^5+24*x^4+27*x^3+51*x^2+103*x+26 y^2=56*x^6+2*x^5+64*x^4+83*x^3+51*x^2+82*x+3 y^2=79*x^6+55*x^5+19*x^4+88*x^3+92*x^2+41*x+44 y^2=6*x^6+39*x^5+14*x^4+14*x^3+100*x^2+103*x+67 y^2=75*x^6+22*x^5+84*x^4+5*x^3+82*x^2+52*x+93 y^2=105*x^6+84*x^5+76*x^4+59*x^3+79*x^2+24*x+29 y^2=54*x^6+27*x^5+63*x^4+9*x^3+106*x^2+33*x+60 y^2=27*x^6+49*x^5+68*x^3+100*x^2+46*x+54 y^2=102*x^6+2*x^5+52*x^4+90*x^3+70*x^2+63*x+100 y^2=18*x^6+58*x^5+2*x^4+102*x^3+83*x^2+64*x+78 y^2=2*x^6+26*x^5+69*x^4+76*x^3+97*x^2+17*x+21 y^2=24*x^6+24*x^5+103*x^4+71*x^3+19*x^2+71*x+85 y^2=16*x^6+65*x^5+101*x^4+68*x^3+26*x^2+26*x+42 y^2=5*x^6+59*x^5+48*x^4+98*x^3+35*x^2+73*x+23 y^2=64*x^6+3*x^5+82*x^4+8*x^3+38*x^2+26*x+28 y^2=2*x^6+63*x^5+22*x^4+7*x^3+4*x^2+92*x+69 y^2=61*x^6+18*x^5+87*x^4+49*x^3+68*x^2+58*x+61 y^2=90*x^6+47*x^5+8*x^4+20*x^3+44*x^2+60*x+12 y^2=12*x^6+13*x^5+12*x^4+88*x^3+48*x^2+104*x+10 y^2=34*x^6+58*x^5+10*x^4+69*x^3+76*x^2+76*x+86 y^2=10*x^6+30*x^5+80*x^4+16*x^3+38*x^2+62*x+8 y^2=28*x^6+105*x^5+85*x^4+69*x^3+94*x^2+94*x+23 y^2=105*x^6+33*x^5+22*x^4+67*x^3+102*x^2+49*x+56 y^2=26*x^6+30*x^5+13*x^4+51*x^3+94*x^2+63*x+65 y^2=30*x^6+35*x^5+3*x^4+24*x^3+85*x^2+8*x y^2=24*x^6+31*x^5+4*x^4+x^3+15*x^2+73*x+48 y^2=87*x^6+23*x^5+25*x^4+56*x^3+34*x^2+76*x+85 y^2=2*x^6+80*x^5+39*x^4+28*x^3+85*x^2+14*x+10 y^2=8*x^6+33*x^5+85*x^4+59*x^3+90*x^2+50*x+72 y^2=57*x^6+101*x^5+16*x^4+53*x^3+62*x^2+98*x+98 y^2=97*x^6+64*x^5+64*x^4+65*x^3+81*x^2+7*x+31 y^2=70*x^6+37*x^5+50*x^4+56*x^3+x^2+6*x+106 y^2=6*x^6+106*x^5+46*x^4+88*x^3+30*x^2+8*x+33 y^2=19*x^6+33*x^5+97*x^4+33*x^3+71*x^2+8*x+106 y^2=31*x^6+80*x^5+49*x^4+54*x^3+52*x^2+39*x+23 y^2=105*x^6+20*x^5+73*x^4+98*x^3+3*x^2+102*x+102 y^2=66*x^6+2*x^5+71*x^4+76*x^3+10*x^2+81*x+78 y^2=103*x^6+86*x^5+28*x^4+72*x^3+60*x^2+15*x+95 y^2=86*x^6+11*x^5+65*x^4+35*x^3+11*x^2+54*x+61 y^2=94*x^6+51*x^5+69*x^4+45*x^3+68*x^2+19 y^2=99*x^6+22*x^5+87*x^4+11*x^3+68*x^2+6*x+18 y^2=25*x^6+61*x^5+76*x^4+85*x^3+62*x^2+101*x+28 y^2=71*x^6+84*x^5+104*x^3+34*x^2+18*x+18 y^2=87*x^6+102*x^5+20*x^4+62*x^3+97*x^2+64*x+54 y^2=23*x^6+47*x^5+2*x^4+30*x^3+55*x^2+77*x+91