# Stored data for abelian variety isogeny class 6.2.ai_bg_adj_hb_amh_sn, downloaded from the LMFDB on 22 September 2025. {"abvar_count": 1, "abvar_counts": [1, 4009, 141436, 15190101, 1005946931, 70310098576, 7593444454331, 391558651249725, 17823209075803324, 1220422450820459359], "abvar_counts_str": "1 4009 141436 15190101 1005946931 70310098576 7593444454331 391558651249725 17823209075803324 1220422450820459359 ", "angle_corank": 3, "angle_rank": 3, "angles": [0.0635622003030556, 0.123548644960916, 0.165221137389402, 0.365221137389402, 0.45688197829425, 0.663562200303056], "center_dim": 12, "curve_count": -5, "curve_counts": [-5, 5, 4, 13, 30, 68, 198, 341, 508, 1080], "curve_counts_str": "-5 5 4 13 30 68 198 341 508 1080 ", "curves": [], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 1, "dim4_factors": 1, "dim5_distinct": 0, "dim5_factors": 0, "g": 6, "galois_groups": ["4T2", "8T10"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 1, "geom_dim2_factors": 2, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 6, "geometric_extension_degree": 30, "geometric_galois_groups": ["2T1", "4T3"], "geometric_number_fields": ["2.0.15.1", "4.0.3625.1"], "geometric_splitting_field": "16.0.1132927402587890625.1", "geometric_splitting_polynomials": [[121, -11, -65, 16, 24, -4, -5, -1, 1]], "has_geom_ss_factor": false, "has_jacobian": -1, "has_principal_polarization": 1, "hyp_count": 0, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 0, "label": "6.2.ai_bg_adj_hb_amh_sn", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 60, "newton_coelevation": 12, "newton_elevation": 0, "number_fields": ["4.0.225.1", "8.0.13140625.1"], "p": 2, "p_rank": 6, "p_rank_deficit": 0, "poly": [1, -8, 32, -87, 183, -319, 481, -638, 732, -696, 512, -256, 64], "poly_str": "1 -8 32 -87 183 -319 481 -638 732 -696 512 -256 64 ", "primitive_models": [], "q": 2, "real_poly": [1, -8, 20, -7, -37, 43, -11], "simple_distinct": ["2.2.ad_f", "4.2.af_m_au_bd"], "simple_factors": ["2.2.ad_fA", "4.2.af_m_au_bdA"], "simple_multiplicities": [1, 1], "slopes": ["0A", "0B", "0C", "0D", "0E", "0F", "1A", "1B", "1C", "1D", "1E", "1F"], "splitting_field": "16.0.1132927402587890625.1", "splitting_polynomials": [[1, 3, 4, 9, 12, -12, 8, 54, -19, -54, 8, 12, 12, -9, 4, -3, 1]], "twist_count": 24, "twists": [["6.2.ac_c_ad_d_ab_b", "6.4.a_ac_b_x_j_acx", 2], ["6.2.c_c_d_d_b_b", "6.4.a_ac_b_x_j_acx", 2], ["6.2.i_bg_dj_hb_mh_sn", "6.4.a_ac_b_x_j_acx", 2], ["6.2.af_l_ap_v_abo_cp", "6.8.af_o_abe_g_fz_axt", 3], ["6.2.ac_c_ad_d_ab_b", "6.8.af_o_abe_g_fz_axt", 3], ["6.2.ad_c_d_ac_aj_v", "6.32.ad_bg_adj_dge_affj_cepz", 5], ["6.2.ad_h_ar_bc_abs_ct", "6.32.ad_bg_adj_dge_affj_cepz", 5], ["6.2.ad_h_ah_ac_ba_abx", "6.32.ad_bg_adj_dge_affj_cepz", 5], ["6.2.f_l_p_v_bo_cp", "6.64.d_ado_aqa_htc_vxr_aykxb", 6], ["6.2.d_c_ad_ac_j_v", "6.1024.cd_hfq_kryp_wvkqo_bbrsqvf_bsgrlxtp", 10], ["6.2.d_h_h_ac_aba_abx", "6.1024.cd_hfq_kryp_wvkqo_bbrsqvf_bsgrlxtp", 10], ["6.2.d_h_r_bc_bs_ct", "6.1024.cd_hfq_kryp_wvkqo_bbrsqvf_bsgrlxtp", 10], ["6.2.af_n_az_bt_adc_ev", "6.4096.ahl_bfrs_aeomge_ncwjgi_abhidzywn_dicepfdnl", 12], ["6.2.f_n_z_bt_dc_ev", "6.4096.ahl_bfrs_aeomge_ncwjgi_abhidzywn_dicepfdnl", 12], ["6.2.a_ae_a_q_a_abh", "6.32768.a_acdix_a_adbbnrld_a_oxrurtytzz", 15], ["6.2.a_b_af_b_af_r", "6.32768.a_acdix_a_adbbnrld_a_oxrurtytzz", 15], ["6.2.a_b_f_b_f_r", "6.32768.a_acdix_a_adbbnrld_a_oxrurtytzz", 15], ["6.2.d_c_ad_ac_j_v", "6.32768.a_acdix_a_adbbnrld_a_oxrurtytzz", 15], ["6.2.d_h_h_ac_aba_abx", "6.32768.a_acdix_a_adbbnrld_a_oxrurtytzz", 15], ["6.2.d_h_r_bc_bs_ct", "6.32768.a_acdix_a_adbbnrld_a_oxrurtytzz", 15], ["6.2.ad_i_ap_bc_abt_cr", "6.1048576.jyx_camsvm_henduvop_tbdagslbik_bnrzsumkymuut_cosknflbgrrgewv", 20], ["6.2.d_i_p_bc_bt_cr", "6.1048576.jyx_camsvm_henduvop_tbdagslbik_bnrzsumkymuut_cosknflbgrrgewv", 20], ["6.2.a_ac_a_k_a_ap", "6.1152921504606846976.avfvnjpe_ihuksomfxterch_acefygzopajipfddvoyitg_lodbfgjdkqozlmdebcogsjvqlkp_acaefqjpnmvrckbmdesjnywtmvbyjlrpggk_hquusffvsyuewqrbfbtxnzyaxzpvdhlbpgxedpmv", 60], ["6.2.a_c_a_k_a_p", "6.1152921504606846976.avfvnjpe_ihuksomfxterch_acefygzopajipfddvoyitg_lodbfgjdkqozlmdebcogsjvqlkp_acaefqjpnmvrckbmdesjnywtmvbyjlrpggk_hquusffvsyuewqrbfbtxnzyaxzpvdhlbpgxedpmv", 60], ["6.2.a_d_af_f_ap_p", "6.1152921504606846976.avfvnjpe_ihuksomfxterch_acefygzopajipfddvoyitg_lodbfgjdkqozlmdebcogsjvqlkp_acaefqjpnmvrckbmdesjnywtmvbyjlrpggk_hquusffvsyuewqrbfbtxnzyaxzpvdhlbpgxedpmv", 60], ["6.2.a_d_f_f_p_p", "6.1152921504606846976.avfvnjpe_ihuksomfxterch_acefygzopajipfddvoyitg_lodbfgjdkqozlmdebcogsjvqlkp_acaefqjpnmvrckbmdesjnywtmvbyjlrpggk_hquusffvsyuewqrbfbtxnzyaxzpvdhlbpgxedpmv", 60], ["6.2.a_e_a_q_a_bh", "6.1152921504606846976.avfvnjpe_ihuksomfxterch_acefygzopajipfddvoyitg_lodbfgjdkqozlmdebcogsjvqlkp_acaefqjpnmvrckbmdesjnywtmvbyjlrpggk_hquusffvsyuewqrbfbtxnzyaxzpvdhlbpgxedpmv", 60]]}