# Stored data for abelian variety isogeny class 3.7.ao_di_alk, downloaded from the LMFDB on 28 December 2025. {"abvar_count": 36, "abvar_counts": [36, 73008, 38211264, 14126463936, 4829415508116, 1640360041721856, 559905950862077436, 191731184558241120000, 65732846304644610541632, 22542842987256138553841328], "abvar_counts_str": "36 73008 38211264 14126463936 4829415508116 1640360041721856 559905950862077436 191731184558241120000 65732846304644610541632 22542842987256138553841328 ", "angle_corank": 2, "angle_rank": 1, "angles": [0.106147807504828, 0.106147807504828, 0.227185525828505], "center_dim": 4, "curve_count": -6, "curve_counts": [-6, 26, 324, 2450, 17094, 118508, 825546, 5769314, 40366188, 282519146], "curve_counts_str": "-6 26 324 2450 17094 118508 825546 5769314 40366188 282519146 ", "curves": [], "dim1_distinct": 2, "dim1_factors": 3, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 3, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 3, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 6, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.3.1"], "geometric_splitting_field": "2.0.3.1", "geometric_splitting_polynomials": [[1, -1, 1]], "has_geom_ss_factor": false, "has_jacobian": -1, "has_principal_polarization": 1, "hyp_count": 0, "is_cyclic": false, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "label": "3.7.ao_di_alk", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 18, "newton_coelevation": 4, "newton_elevation": 0, "noncyclic_primes": [2, 3], "number_fields": ["2.0.3.1", "2.0.3.1"], "p": 7, "p_rank": 3, "p_rank_deficit": 0, "poly": [1, -14, 86, -296, 602, -686, 343], "poly_str": "1 -14 86 -296 602 -686 343 ", "primitive_models": [], "q": 7, "real_poly": [1, -14, 65, -100], "simple_distinct": ["1.7.af", "1.7.ae"], "simple_factors": ["1.7.afA", "1.7.afB", "1.7.aeA"], "simple_multiplicities": [2, 1], "slopes": ["0A", "0B", "0C", "1A", "1B", "1C"], "splitting_field": "2.0.3.1", "splitting_polynomials": [[1, -1, 1]], "twist_count": 78, "twists": [["3.7.ag_g_q", "3.49.ay_ma_advu", 2], ["3.7.ae_ae_bs", "3.49.ay_ma_advu", 2], ["3.7.e_ae_abs", "3.49.ay_ma_advu", 2], ["3.7.g_g_aq", "3.49.ay_ma_advu", 2], ["3.7.o_di_lk", "3.49.ay_ma_advu", 2], ["3.7.al_ce_agx", "3.343.au_yf_aima", 3], ["3.7.ai_bg_ado", "3.343.au_yf_aima", 3], ["3.7.af_ae_cd", "3.343.au_yf_aima", 3], ["3.7.af_f_k", "3.343.au_yf_aima", 3], ["3.7.af_u_acn", "3.343.au_yf_aima", 3], ["3.7.ac_c_ai", "3.343.au_yf_aima", 3], ["3.7.ac_o_abg", "3.343.au_yf_aima", 3], ["3.7.b_ae_al", "3.343.au_yf_aima", 3], ["3.7.b_f_ac", "3.343.au_yf_aima", 3], ["3.7.b_u_n", "3.343.au_yf_aima", 3], ["3.7.e_ae_abs", "3.343.au_yf_aima", 3], ["3.7.e_f_ai", "3.343.au_yf_aima", 3], ["3.7.e_u_ca", "3.343.au_yf_aima", 3], ["3.7.h_bd_de", "3.343.au_yf_aima", 3], ["3.7.h_bg_dz", "3.343.au_yf_aima", 3], ["3.7.k_by_ge", "3.343.au_yf_aima", 3], ["3.7.n_cz_kc", "3.343.au_yf_aima", 3], ["3.7.ae_s_abs", "3.2401.bw_fbc_pynu", 4], ["3.7.e_s_bs", "3.2401.bw_fbc_pynu", 4], ["3.7.ap_ds_amx", "3.117649.bha_bibcx_syzlma", 6], ["3.7.an_cz_akc", "3.117649.bha_bibcx_syzlma", 6], ["3.7.am_cr_aiy", "3.117649.bha_bibcx_syzlma", 6], ["3.7.ak_by_age", "3.117649.bha_bibcx_syzlma", 6], ["3.7.aj_bk_adx", "3.117649.bha_bibcx_syzlma", 6], ["3.7.aj_bt_afm", "3.117649.bha_bibcx_syzlma", 6], ["3.7.ah_bd_ade", "3.117649.bha_bibcx_syzlma", 6], ["3.7.ah_bg_adz", "3.117649.bha_bibcx_syzlma", 6], ["3.7.ag_be_adk", "3.117649.bha_bibcx_syzlma", 6], ["3.7.ae_f_i", "3.117649.bha_bibcx_syzlma", 6], ["3.7.ae_u_aca", "3.117649.bha_bibcx_syzlma", 6], ["3.7.ad_ad_bm", "3.117649.bha_bibcx_syzlma", 6], ["3.7.ad_m_abv", "3.117649.bha_bibcx_syzlma", 6], ["3.7.ad_y_abr", "3.117649.bha_bibcx_syzlma", 6], ["3.7.ab_ae_l", "3.117649.bha_bibcx_syzlma", 6], ["3.7.ab_f_c", "3.117649.bha_bibcx_syzlma", 6], ["3.7.ab_u_an", "3.117649.bha_bibcx_syzlma", 6], ["3.7.a_a_au", "3.117649.bha_bibcx_syzlma", 6], ["3.7.a_a_u", "3.117649.bha_bibcx_syzlma", 6], ["3.7.c_c_i", "3.117649.bha_bibcx_syzlma", 6], ["3.7.c_o_bg", "3.117649.bha_bibcx_syzlma", 6], ["3.7.d_ad_abm", "3.117649.bha_bibcx_syzlma", 6], ["3.7.d_m_bv", "3.117649.bha_bibcx_syzlma", 6], ["3.7.d_y_br", "3.117649.bha_bibcx_syzlma", 6], ["3.7.f_ae_acd", "3.117649.bha_bibcx_syzlma", 6], ["3.7.f_f_ak", "3.117649.bha_bibcx_syzlma", 6], ["3.7.f_u_cn", "3.117649.bha_bibcx_syzlma", 6], ["3.7.g_be_dk", "3.117649.bha_bibcx_syzlma", 6], ["3.7.i_bg_do", "3.117649.bha_bibcx_syzlma", 6], ["3.7.j_bk_dx", "3.117649.bha_bibcx_syzlma", 6], ["3.7.j_bt_fm", "3.117649.bha_bibcx_syzlma", 6], ["3.7.l_ce_gx", "3.117649.bha_bibcx_syzlma", 6], ["3.7.m_cr_iy", "3.117649.bha_bibcx_syzlma", 6], ["3.7.p_ds_mx", "3.117649.bha_bibcx_syzlma", 6], ["3.7.af_ag_cn", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.af_j_ak", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.af_s_acd", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.ae_ag_ca", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.ae_j_ai", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.ab_ag_n", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.ab_j_ac", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.ab_s_al", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.b_ag_an", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.b_j_c", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.b_s_l", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.e_ag_aca", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.e_j_i", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.f_ag_acn", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.f_j_k", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.f_s_cd", "3.13841287201.baffu_nzgkjpwp_elybzpbdjohg", 12], ["3.7.a_a_abl", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.a_a_ar", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.a_a_r", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.a_a_bl", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18]]}