# Stored data for abelian variety isogeny class 3.7.a_a_bl, downloaded from the LMFDB on 14 January 2026. {"abvar_count": 381, "abvar_counts": [381, 116967, 55306341, 13841056011, 4747565749071, 1600258171203063, 558545865498583329, 191581231354799710323, 65773842741647278356672, 22539340290683783013161007], "abvar_counts_str": "381 116967 55306341 13841056011 4747565749071 1600258171203063 558545865498583329 191581231354799710323 65773842741647278356672 22539340290683783013161007 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 2, "angle_rank": 1, "angles": [0.328370029727051, 0.338296636939616, 0.995036696393717], "center_dim": 6, "cohen_macaulay_max": 1, "curve_count": 8, "curve_counts": [8, 50, 455, 2402, 16808, 115601, 823544, 5764802, 40391348, 282475250], "curve_counts_str": "8 50 455 2402 16808 115601 823544 5764802 40391348 282475250 ", "curves": [], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 1, "dim3_factors": 1, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 3, "galois_groups": ["6T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 3, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 3, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.3.1"], "geometric_splitting_field": "2.0.3.1", "geometric_splitting_polynomials": [[1, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 0, "has_principal_polarization": 1, "hyp_count": 0, "is_cyclic": true, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "label": "3.7.a_a_bl", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 36, "newton_coelevation": 4, "newton_elevation": 0, "noncyclic_primes": [], "number_fields": ["6.0.19683.1"], "p": 7, "p_rank": 3, "p_rank_deficit": 0, "pic_prime_gens": [], "poly": [1, 0, 0, 37, 0, 0, 343], "poly_str": "1 0 0 37 0 0 343 ", "primitive_models": [], "principal_polarization_count": 1, "q": 7, "real_poly": [1, 0, -21, 37], "simple_distinct": ["3.7.a_a_bl"], "simple_factors": ["3.7.a_a_blA"], "simple_multiplicities": [1], "singular_primes": [], "size": 1, "slopes": ["0A", "0B", "0C", "1A", "1B", "1C"], "splitting_field": "6.0.19683.1", "splitting_polynomials": [[1, 0, 0, -1, 0, 0, 1]], "twist_count": 78, "twists": [["3.7.a_a_abl", "3.49.a_a_abah", 2], ["3.7.ap_ds_amx", "3.40353607.cdvo_bydwfjh_ydcqggkoe", 9], ["3.7.aj_bk_adx", "3.40353607.cdvo_bydwfjh_ydcqggkoe", 9], ["3.7.ag_g_q", "3.40353607.cdvo_bydwfjh_ydcqggkoe", 9], ["3.7.ad_m_abv", "3.40353607.cdvo_bydwfjh_ydcqggkoe", 9], ["3.7.a_a_au", "3.40353607.cdvo_bydwfjh_ydcqggkoe", 9], ["3.7.a_a_ar", "3.40353607.cdvo_bydwfjh_ydcqggkoe", 9], ["3.7.d_ad_abm", "3.40353607.cdvo_bydwfjh_ydcqggkoe", 9], ["3.7.d_y_br", "3.40353607.cdvo_bydwfjh_ydcqggkoe", 9], ["3.7.g_be_dk", "3.40353607.cdvo_bydwfjh_ydcqggkoe", 9], ["3.7.j_bt_fm", "3.40353607.cdvo_bydwfjh_ydcqggkoe", 9], ["3.7.m_cr_iy", "3.40353607.cdvo_bydwfjh_ydcqggkoe", 9], ["3.7.ao_di_alk", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.an_cz_akc", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.am_cr_aiy", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.al_ce_agx", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ak_by_age", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.aj_bt_afm", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ai_bg_ado", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ah_bd_ade", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ah_bg_adz", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ag_be_adk", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.af_ae_cd", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.af_f_k", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.af_u_acn", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ae_ae_bs", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ae_f_i", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ae_u_aca", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ad_ad_bm", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ad_y_abr", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ac_c_ai", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ac_o_abg", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ab_ae_l", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ab_f_c", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.ab_u_an", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.a_a_r", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.a_a_u", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.b_ae_al", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.b_f_ac", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.b_u_n", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.c_c_i", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.c_o_bg", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.d_m_bv", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.e_ae_abs", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.e_f_ai", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.e_u_ca", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.f_ae_acd", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.f_f_ak", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.f_u_cn", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.g_g_aq", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.h_bd_de", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.h_bg_dz", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.i_bg_do", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.j_bk_dx", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.k_by_ge", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.l_ce_gx", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.n_cz_kc", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.o_di_lk", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.p_ds_mx", "3.1628413597910449.atpcrfa_ggkqukegmoix_abcbuuxgmukxoucevqa", 18], ["3.7.af_ag_cn", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.af_j_ak", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.af_s_acd", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.ae_ag_ca", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.ae_j_ai", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.ae_s_abs", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.ab_ag_n", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.ab_j_ac", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.ab_s_al", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.b_ag_an", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.b_j_c", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.b_s_l", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.e_ag_aca", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.e_j_i", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.e_s_bs", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.f_ag_acn", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.f_j_k", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36], ["3.7.f_s_cd", "3.2651730845859653471779023381601.acgpjqqnqpwig_chjnbuxeuhdlaysnzcdkvop_abicglavyvwfwtmuwvujnbrfhijyetaqtcu", 36]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_pic_size": 1, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 3, "zfv_singular_count": 0, "zfv_singular_primes": []}