# Stored data for abelian variety isogeny class 3.4.ai_bc_acm, downloaded from the LMFDB on 22 October 2025. {"abvar_count": 5, "abvar_counts": [5, 2025, 156065, 11390625, 946609025, 66556260225, 4262469942785, 274941996890625, 17874140985554945, 1150668609575450625], "abvar_counts_str": "5 2025 156065 11390625 946609025 66556260225 4262469942785 274941996890625 17874140985554945 1150668609575450625 ", "angle_corank": 3, "angle_rank": 0, "angles": [0.0, 0.0, 0.0, 0.0, 0.5], "center_dim": 3, "curve_count": -3, "curve_counts": [-3, 9, 33, 161, 897, 3969, 15873, 64001, 260097, 1046529], "curve_counts_str": "-3 9 33 161 897 3969 15873 64001 260097 1046529 ", "curves": [], "dim1_distinct": 2, "dim1_factors": 3, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 3, "galois_groups": ["1T1", "2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 3, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 1, "geometric_extension_degree": 4, "geometric_galois_groups": ["1T1"], "geometric_number_fields": ["1.1.1.1"], "geometric_splitting_field": "1.1.1.1", "geometric_splitting_polynomials": [[0, 1]], "has_geom_ss_factor": true, "has_jacobian": -1, "has_principal_polarization": 1, "hyp_count": 0, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": false, "is_simple": false, "is_squarefree": false, "is_supersingular": true, "jacobian_count": 0, "label": "3.4.ai_bc_acm", "max_divalg_dim": 4, "max_geom_divalg_dim": 4, "max_twist_degree": 60, "newton_coelevation": 0, "newton_elevation": 4, "number_fields": ["1.1.1.1", "2.0.4.1"], "p": 2, "p_rank": 0, "p_rank_deficit": 3, "poly": [1, -8, 28, -64, 112, -128, 64], "poly_str": "1 -8 28 -64 112 -128 64 ", "primitive_models": ["3.2.ac_ac_i", "3.2.c_ac_ai"], "q": 4, "real_poly": [1, -8, 16], "simple_distinct": ["1.4.ae", "1.4.a"], "simple_factors": ["1.4.aeA", "1.4.aeB", "1.4.aA"], "simple_multiplicities": [2, 1], "slopes": ["1/2A", "1/2B", "1/2C", "1/2D", "1/2E", "1/2F"], "splitting_field": "2.0.4.1", "splitting_polynomials": [[1, 0, 1]], "twist_count": 57, "twists": [["3.4.a_ae_a", "3.16.ai_aq_jw", 2], ["3.4.i_bc_cm", "3.16.ai_aq_jw", 2], ["3.4.ac_e_aq", "3.64.abg_rg_agbo", 3], ["3.4.e_q_bg", "3.64.abg_rg_agbo", 3], ["3.4.am_ci_age", "3.256.ads_frs_aereu", 4], ["3.4.ae_ae_bg", "3.256.ads_frs_aereu", 4], ["3.4.ae_m_abg", "3.256.ads_frs_aereu", 4], ["3.4.a_m_a", "3.256.ads_frs_aereu", 4], ["3.4.e_ae_abg", "3.256.ads_frs_aereu", 4], ["3.4.e_m_bg", "3.256.ads_frs_aereu", 4], ["3.4.m_ci_ge", "3.256.ads_frs_aereu", 4], ["3.4.c_i_q", "3.1024.aey_kps_aoxum", 5], ["3.4.ag_u_abw", "3.4096.aey_agbo_chrdw", 6], ["3.4.ae_q_abg", "3.4096.aey_agbo_chrdw", 6], ["3.4.a_i_a", "3.4096.aey_agbo_chrdw", 6], ["3.4.c_e_q", "3.4096.aey_agbo_chrdw", 6], ["3.4.g_u_bw", "3.4096.aey_agbo_chrdw", 6], ["3.4.ae_e_a", "3.65536.achc_cdyfg_abcghbiu", 8], ["3.4.a_e_a", "3.65536.achc_cdyfg_abcghbiu", 8], ["3.4.e_e_a", "3.65536.achc_cdyfg_abcghbiu", 8], ["3.4.ac_i_aq", "3.1048576.adau_achrdw_nxmrlxw", 10], ["3.4.ak_bs_aei", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.ai_bg_adc", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.ag_m_aq", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.ag_y_ace", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.ae_a_q", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.ae_i_aq", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.ac_ae_q", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.ac_a_i", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.ac_i_ai", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.ac_m_aq", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.a_a_aq", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.a_a_a", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.a_a_q", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.c_ae_aq", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.c_a_ai", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.c_i_i", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.c_m_q", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.e_a_aq", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.e_i_q", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.g_m_q", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.g_y_ce", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.i_bg_dc", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.k_bs_ei", "3.16777216.abkjg_veshnc_agpdbywrmu", 12], ["3.4.ag_q_abg", "3.1099511627776.antyxc_dazkxmmbxg_ajhqjkfwqrezpuu", 20], ["3.4.ac_a_a", "3.1099511627776.antyxc_dazkxmmbxg_ajhqjkfwqrezpuu", 20], ["3.4.c_a_a", "3.1099511627776.antyxc_dazkxmmbxg_ajhqjkfwqrezpuu", 20], ["3.4.g_q_bg", "3.1099511627776.antyxc_dazkxmmbxg_ajhqjkfwqrezpuu", 20], ["3.4.ac_e_a", "3.281474976710656.aimhifg_bdxqhjeswqtc_aceibxnuywuujiexyu", 24], ["3.4.c_e_a", "3.281474976710656.aimhifg_bdxqhjeswqtc_aceibxnuywuujiexyu", 24], ["3.4.a_a_ai", "3.4722366482869645213696.abzisumabg_bqgbldwfrcpgzqrzc_asnumpuzthgfmphfvtvxmogku", 36], ["3.4.a_a_i", "3.4722366482869645213696.abzisumabg_bqgbldwfrcpgzqrzc_asnumpuzthgfmphfvtvxmogku", 36], ["3.4.ae_m_ay", "3.1329227995784915872903807060280344576.acumskwopkjhrtg_dgflcjrsblvhvzhdprklyophwlc_acaemqphefokfqnffqldeyxuvbllmdjsxjsbxudiu", 60], ["3.4.a_e_ai", "3.1329227995784915872903807060280344576.acumskwopkjhrtg_dgflcjrsblvhvzhdprklyophwlc_acaemqphefokfqnffqldeyxuvbllmdjsxjsbxudiu", 60], ["3.4.a_e_i", "3.1329227995784915872903807060280344576.acumskwopkjhrtg_dgflcjrsblvhvzhdprklyophwlc_acaemqphefokfqnffqldeyxuvbllmdjsxjsbxudiu", 60], ["3.4.e_m_y", "3.1329227995784915872903807060280344576.acumskwopkjhrtg_dgflcjrsblvhvzhdprklyophwlc_acaemqphefokfqnffqldeyxuvbllmdjsxjsbxudiu", 60]]}