# Stored data for abelian variety isogeny class 3.23.al_dp_asj, downloaded from the LMFDB on 14 January 2026. {"abvar_count": 8093, "abvar_counts": [8093, 167581751, 1847179396091, 21964774030054759, 266798506515902581403, 3244153375099598798840423, 39469220098744706002639618048, 480246162503858801282232428527303, 5843218619694117793750067495368147421, 71094371220601707646191745348748646181031], "abvar_counts_str": "8093 167581751 1847179396091 21964774030054759 266798506515902581403 3244153375099598798840423 39469220098744706002639618048 480246162503858801282232428527303 5843218619694117793750067495368147421 71094371220601707646191745348748646181031 ", "angle_corank": 2, "angle_rank": 1, "angles": [0.242559439976821, 0.32886913145175, 0.528273725691107], "center_dim": 6, "curve_count": 13, "curve_counts": [13, 595, 12475, 280483, 6440283, 148036003, 3404621520, 78310234947, 1801154996173, 41426524283235], "curve_counts_str": "13 595 12475 280483 6440283 148036003 3404621520 78310234947 1801154996173 41426524283235 ", "curves": ["y^2=22*x^7+10*x^5+7*x^4+17*x^3+4*x^2+6*x+22", "y^2=22*x^7+11*x^5+x^4+5*x^3+8*x^2+19*x+17", "y^2=22*x^7+22*x^5+5*x^4+3*x^3+21*x^2+21*x+10", "y^2=x^7+22*x^5+10*x^3+3*x^2+14*x+15", "y^2=22*x^7+19*x^5+17*x^4+13*x^3+x^2+12*x+17", "y^2=x^7+18*x^5+17*x^3+10*x^2+5*x+14", "y^2=22*x^7+5*x^5+14*x^4+21*x^3+11*x^2+6*x+20", "y^2=x^7+9*x^5+22*x^4+4*x^3+13*x^2+22*x+15", "y^2=22*x^7+22*x^5+18*x^4+2*x^3+22*x^2+16*x+10", "y^2=x^7+10*x^5+18*x^4+21*x^3+16*x+17", "y^2=x^7+3*x^5+10*x^4+14*x^3+15*x^2+10*x+7", "y^2=x^7+7*x^5+9*x^4+17*x^2+22*x+11", "y^2=x^7+13*x^5+9*x^4+2*x^3+16*x^2+11*x+5"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 1, "dim3_factors": 1, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 3, "galois_groups": ["6T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 3, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 7, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.7.1"], "geometric_splitting_field": "2.0.7.1", "geometric_splitting_polynomials": [[2, -1, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 13, "is_cyclic": true, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "label": "3.23.al_dp_asj", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 42, "newton_coelevation": 4, "newton_elevation": 0, "noncyclic_primes": [], "number_fields": ["6.0.16807.1"], "p": 23, "p_rank": 3, "p_rank_deficit": 0, "poly": [1, -11, 93, -477, 2139, -5819, 12167], "poly_str": "1 -11 93 -477 2139 -5819 12167 ", "primitive_models": [], "q": 23, "real_poly": [1, -11, 24, 29], "simple_distinct": ["3.23.al_dp_asj"], "simple_factors": ["3.23.al_dp_asjA"], "simple_multiplicities": [1], "slopes": ["0A", "0B", "0C", "1A", "1B", "1C"], "splitting_field": "6.0.16807.1", "splitting_polynomials": [[1, -1, 1, -1, 1, -1, 1]], "twist_count": 14, "twists": [["3.23.l_dp_sj", "3.529.cn_dpp_dupd", 2], ["3.23.d_at_afz", "3.3404825447.alprk_czykznnh_ambqafuwktye", 7], ["3.23.y_kb_cke", "3.3404825447.alprk_czykznnh_ambqafuwktye", 7], ["3.23.ay_kb_acke", "3.11592836324538749809.vgrzwus_tvbuzvtrwskhtf_ieinmxcwubcixufikcsau", 14], ["3.23.ai_f_fo", "3.11592836324538749809.vgrzwus_tvbuzvtrwskhtf_ieinmxcwubcixufikcsau", 14], ["3.23.ad_at_fz", "3.11592836324538749809.vgrzwus_tvbuzvtrwskhtf_ieinmxcwubcixufikcsau", 14], ["3.23.i_f_afo", "3.11592836324538749809.vgrzwus_tvbuzvtrwskhtf_ieinmxcwubcixufikcsau", 14], ["3.23.a_a_abo", "3.39471584120695485887249589623.iccnhnmlhqe_bbskjstzokpxkadfyvbgzl_bzojralodgmjbgwklfpyvvjfghbczfye", 21], ["3.23.ai_bp_afo", "3.134393854047545109686936775588697536481.wggvklteucnrhy_iwjvqbneootnuegwcmbxubtxanmt_cbaodkajbaacggrxmsquvnehywoqjkmmpvqvgwdjzg", 28], ["3.23.i_bp_fo", "3.134393854047545109686936775588697536481.wggvklteucnrhy_iwjvqbneootnuegwcmbxubtxanmt_cbaodkajbaacggrxmsquvnehywoqjkmmpvqvgwdjzg", 28], ["3.23.aq_ey_abau", "3.1558005952997140033806173725098810522409738596181909282129.ajwxvmfslephscrunzjqzu_bsigefchwbplckhgtqkmbndjlzecqoofcucqlckiap_aejgyrwcbhmthhcdimuuhwqvbjgyopmahspvobwdysycaerwqzifxqwiggksfzg", 42], ["3.23.a_a_bo", "3.1558005952997140033806173725098810522409738596181909282129.ajwxvmfslephscrunzjqzu_bsigefchwbplckhgtqkmbndjlzecqoofcucqlckiap_aejgyrwcbhmthhcdimuuhwqvbjgyopmahspvobwdysycaerwqzifxqwiggksfzg", 42], ["3.23.q_ey_bau", "3.1558005952997140033806173725098810522409738596181909282129.ajwxvmfslephscrunzjqzu_bsigefchwbplckhgtqkmbndjlzecqoofcucqlckiap_aejgyrwcbhmthhcdimuuhwqvbjgyopmahspvobwdysycaerwqzifxqwiggksfzg", 42]]}