# Stored data for abelian variety isogeny class 3.2.ad_d_ac, downloaded from the LMFDB on 01 February 2026. {"abvar_count": 1, "abvar_counts": [1, 35, 208, 6475, 30791, 203840, 2045639, 13111875, 124128784, 1136957675], "abvar_counts_str": "1 35 208 6475 30791 203840 2045639 13111875 124128784 1136957675 ", "angle_corank": 2, "angle_rank": 1, "angles": [0.0516399385853587, 0.25, 0.718306605252025], "center_dim": 6, "cohen_macaulay_max": 1, "curve_count": 0, "curve_counts": [0, 2, 3, 26, 30, 47, 126, 194, 471, 1082], "curve_counts_str": "0 2 3 26 30 47 126 194 471 1082 ", "curves": ["x^4+x^3*y+x^3*z+x^2*y*z+y^4+y^3*z+z^4=0"], "dim1_distinct": 1, "dim1_factors": 1, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 2, "g": 3, "galois_groups": ["2T1", "4T2"], "geom_dim1_distinct": 2, "geom_dim1_factors": 3, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 3, "geometric_extension_degree": 12, "geometric_galois_groups": ["1T1", "2T1"], "geometric_number_fields": ["1.1.1.1", "2.0.7.1"], "geometric_splitting_field": "2.0.7.1", "geometric_splitting_polynomials": [[2, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": true, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 0, "is_cyclic": true, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 1, "label": "3.2.ad_d_ac", "max_divalg_dim": 1, "max_geom_divalg_dim": 4, "max_twist_degree": 24, "newton_coelevation": 3, "newton_elevation": 1, "noncyclic_primes": [], "number_fields": ["2.0.4.1", "4.0.441.1"], "p": 2, "p_rank": 2, "p_rank_deficit": 1, "poly": [1, -3, 3, -2, 6, -12, 8], "poly_str": "1 -3 3 -2 6 -12 8 ", "primitive_models": [], "q": 2, "real_poly": [1, -3, -3, 10], "simple_distinct": ["1.2.ac", "2.2.ab_ab"], "simple_factors": ["1.2.acA", "2.2.ab_abA"], "simple_multiplicities": [1, 1], "singular_primes": ["3,12*F-5*V^2+7*V+2"], "slopes": ["0A", "0B", "1/2A", "1/2B", "1A", "1B"], "splitting_field": "8.0.49787136.1", "splitting_polynomials": [[16, 0, 12, 0, 5, 0, 3, 0, 1]], "twist_count": 18, "twists": [["3.2.ab_ab_g", "3.4.ad_j_ay", 2], ["3.2.b_ab_ag", "3.4.ad_j_ay", 2], ["3.2.d_d_c", "3.4.ad_j_ay", 2], ["3.2.a_d_ac", "3.8.ag_j_e", 3], ["3.2.ae_l_as", "3.64.as_kn_adkq", 6], ["3.2.ac_f_ag", "3.64.as_kn_adkq", 6], ["3.2.a_d_c", "3.64.as_kn_adkq", 6], ["3.2.c_f_g", "3.64.as_kn_adkq", 6], ["3.2.e_l_s", "3.64.as_kn_adkq", 6], ["3.2.ab_b_ae", "3.256.acl_cxd_acewe", 8], ["3.2.b_b_e", "3.256.acl_cxd_acewe", 8], ["3.2.ac_ab_g", "3.4096.io_bngj_epooe", 12], ["3.2.c_ab_ag", "3.4096.io_bngj_epooe", 12], ["3.2.e_l_s", "3.4096.io_bngj_epooe", 12], ["3.2.ac_h_ai", "3.16777216.fpe_abaaxxn_autirtydk", 24], ["3.2.a_ab_a", "3.16777216.fpe_abaaxxn_autirtydk", 24], ["3.2.a_f_a", "3.16777216.fpe_abaaxxn_autirtydk", 24], ["3.2.c_h_i", "3.16777216.fpe_abaaxxn_autirtydk", 24]], "weak_equivalence_count": 2, "zfv_index": 9, "zfv_index_factorization": [[3, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 4, "zfv_singular_count": 2, "zfv_singular_primes": ["3,12*F-5*V^2+7*V+2"]}