# Stored data for abelian variety isogeny class 3.13.ac_t_aci, downloaded from the LMFDB on 07 December 2025. {"abvar_count": 2064, "abvar_counts": [2064, 5911296, 10256422608, 23358036885504, 51517536226654224, 112526636764696978176, 247061223911595416446416, 542778217027900696534450176, 1192502589562592095745484489744, 2619994503993061021314778113006336], "abvar_counts_str": "2064 5911296 10256422608 23358036885504 51517536226654224 112526636764696978176 247061223911595416446416 542778217027900696534450176 1192502589562592095745484489744 2619994503993061021314778113006336 ", "angle_corank": 0, "angle_rank": 3, "angles": [0.207502090325433, 0.518616831924189, 0.651841336648398], "center_dim": 6, "curve_count": 12, "curve_counts": [12, 204, 2124, 28636, 373692, 4829868, 62747676, 815696828, 10604226348, 137858431884], "curve_counts_str": "12 204 2124 28636 373692 4829868 62747676 815696828 10604226348 137858431884 ", "curves": ["y^2=2*x^7+6*x^6+8*x^5+2*x^4+4*x^3+5*x+8", "y^2=2*x^8+5*x^7+5*x^6+2*x^5+11*x^4+8*x^3+x^2+11*x+7", "y^2=2*x^7+10*x^6+2*x^5+5*x^4+9*x^3+4*x^2+10*x+4", "y^2=x^7+12*x^5+6*x^4+3*x^2+7*x+11", "y^2=2*x^8+6*x^7+2*x^6+5*x^5+5*x^4+12*x^3+12*x^2+8*x+12", "y^2=2*x^7+10*x^6+2*x^5+8*x^4+x^3+8*x^2+5*x+10", "y^2=2*x^8+8*x^7+5*x^6+10*x^5+5*x^4+12*x^3+8*x^2+6*x+4", "y^2=2*x^7+5*x^6+2*x^5+7*x^4+8*x^3+9*x^2+8", "y^2=x^8+3*x^6+x^5+6*x^4+x^3+8*x^2+4*x", "y^2=2*x^8+x^7+7*x^6+7*x^5+7*x^4+10*x^3+x^2+11*x+2", "y^2=x^8+6*x^7+12*x^6+8*x^5+7*x^4+10*x^2+8*x+7", "y^2=2*x^8+8*x^7+x^6+5*x^5+10*x^4+x^2+4*x+8", "y^2=2*x^8+4*x^7+2*x^6+9*x^5+9*x^4+x^2+2*x+2", "y^2=x^8+10*x^7+10*x^5+7*x^4+6*x^3+11*x^2+11*x+9", "y^2=x^8+11*x^7+4*x^6+4*x^5+9*x^4+9*x^3+10*x^2+x+8", "y^2=x^8+7*x^7+3*x^5+9*x^4+4*x^2+6*x+4", "y^2=2*x^8+2*x^7+7*x^6+3*x^5+12*x^4+9*x^3+6*x^2+4*x+9", "y^2=2*x^8+10*x^7+10*x^6+7*x^4+4*x^3+10*x^2+12*x+3", "y^2=x^8+x^7+5*x^6+11*x^5+6*x^4+x^3+x^2+x+5", "y^2=x^8+x^6+3*x^5+11*x^4+3*x^3+7*x^2+12*x+2", "y^2=2*x^8+12*x^6+10*x^5+6*x^4+10*x^3+2*x^2+x+4", "y^2=x^8+x^7+8*x^6+4*x^4+3*x^3+8*x^2+9*x+11", "y^2=x^8+2*x^7+6*x^6+6*x^5+5*x^4+12*x^3+3*x^2+3*x+10", "y^2=x^8+x^7+2*x^6+10*x^5+7*x^4+12*x^3+7*x^2+4*x+4", "y^2=x^8+x^7+12*x^6+4*x^3+5*x^2+7*x+2", "y^2=2*x^8+2*x^7+9*x^6+6*x^5+4*x^4+8*x^3+8*x^2+9*x+7", "y^2=x^8+x^7+6*x^6+11*x^5+2*x^4+5*x^3+7*x^2+6*x+9", "y^2=x^8+9*x^7+6*x^6+9*x^5+x^4+4*x^3+8*x^2+11*x+2", "y^2=2*x^8+x^7+8*x^6+12*x^5+11*x^4+8*x^3+3", "y^2=x^7+6*x^5+6*x^4+7*x^2+4*x", "y^2=2*x^8+9*x^7+9*x^6+2*x^5+7*x^4+5*x^3+6*x^2+9*x+3", "y^2=2*x^8+6*x^7+9*x^6+5*x^5+4*x^4+12*x^3+11*x^2+x+6", "y^2=2*x^8+7*x^7+3*x^6+x^5+12*x^4+x^3+6*x+7", "y^2=2*x^8+4*x^7+6*x^6+7*x^5+8*x^4+10*x^3+8*x^2+6*x+1", "y^2=2*x^8+7*x^7+8*x^6+3*x^5+9*x^4+7*x^3+12*x^2+10*x+1", "y^2=2*x^8+8*x^7+5*x^6+3*x^5+5*x^4+9*x^3+9*x^2+8*x+2", "y^2=x^8+6*x^5+4*x^4+5*x^2+3*x+6", "y^2=2*x^8+7*x^7+8*x^6+10*x^5+5*x^4+3*x^3+x^2+10*x+1", "y^2=2*x^8+4*x^7+2*x^6+12*x^5+10*x^3+9*x^2+11*x+10", "y^2=2*x^8+6*x^7+7*x^6+6*x^5+3*x^4+7*x^3+3*x+2", "y^2=2*x^8+8*x^7+x^6+11*x^5+5*x^4+6*x^3+6*x^2+x+12", "y^2=2*x^8+10*x^7+9*x^6+7*x^5+3*x^4+3*x^3+7*x^2+2*x+7", "y^2=x^8+7*x^7+3*x^6+10*x^5+8*x^3+8*x^2+6*x+11", "y^2=x^8+x^7+6*x^6+10*x^5+6*x^4+6*x^2+10*x+7", "y^2=2*x^8+2*x^7+5*x^6+4*x^5+4*x^4+11*x^3+6*x^2+2*x+8", "y^2=x^8+6*x^7+11*x^6+12*x^5+6*x^4+4*x^3+8*x^2+7", "y^2=2*x^8+10*x^7+5*x^6+x^5+4*x^4+7*x^3+4*x^2+8*x+4", "y^2=2*x^8+10*x^7+10*x^6+10*x^5+8*x^4+3*x^3+9*x^2+6*x+12", "y^2=x^8+7*x^7+9*x^6+9*x^5+4*x^4+10*x^3+6*x^2+2*x+11", "y^2=x^8+4*x^7+7*x^6+x^5+8*x^4+7*x^3+2*x^2+7*x+8", "y^2=2*x^8+4*x^7+5*x^6+5*x^4+8*x^3+9*x^2+6", "y^2=2*x^8+9*x^7+2*x^6+8*x^5+10*x^4+12*x^3+7*x^2+10*x+6", "y^2=2*x^8+6*x^6+x^5+3*x^4+9*x^2+2*x+12", "y^2=2*x^8+5*x^7+x^6+3*x^5+x^4+4*x^3+9*x^2+5*x+10", "y^2=2*x^8+2*x^5+12*x^4+x^3+7*x+11", "y^2=x^7+2*x^6+12*x^5+12*x^4+6*x^3+6*x^2+5*x", "y^2=x^8+10*x^7+9*x^6+10*x^5+x^4+9*x^3+5*x+12", "y^2=x^8+9*x^7+2*x^6+x^5+4*x^4+7*x^2+2*x+3", "y^2=2*x^8+9*x^7+4*x^6+x^5+7*x^4+8*x^3+7*x^2+12*x+11", "y^2=x^8+5*x^7+7*x^5+10*x^2+4*x+10", "y^2=2*x^8+5*x^7+10*x^6+12*x^5+11*x^4+4*x^3+10*x^2+7*x+2", "y^2=2*x^8+4*x^6+10*x^5+8*x^4+9*x^3+4*x+7", "y^2=2*x^8+6*x^7+8*x^6+4*x^5+2*x^4+9*x^3+3*x^2+10*x+9", "y^2=2*x^8+9*x^7+11*x^6+10*x^5+6*x^2+5*x+2", "y^2=2*x^8+11*x^7+11*x^6+3*x^5+11*x^4+8*x^3+3*x^2+8*x+4", "y^2=2*x^8+2*x^7+7*x^6+11*x^5+2*x^4+7*x^3+10*x^2+6*x+6", "y^2=x^8+9*x^7+12*x^6+6*x^5+10*x^4+5*x^3+4*x^2+8*x+8", "y^2=2*x^8+3*x^7+10*x^6+3*x^5+4*x^4+3*x^3+9*x^2+5*x+9", "y^2=x^8+12*x^7+9*x^6+11*x^5+x^4+6*x^3+11*x^2+x+2", "y^2=2*x^8+10*x^7+2*x^6+3*x^5+10*x^3+5*x^2+6*x+12", "y^2=2*x^8+12*x^7+4*x^6+12*x^5+8*x^4+11*x^3+4*x^2+8*x+5", "y^2=2*x^8+9*x^7+11*x^6+10*x^5+5*x^4+3*x^3+4*x^2+8*x+7", "y^2=2*x^8+4*x^7+4*x^6+3*x^5+12*x^4+10*x^3+7*x^2+9*x+2", "y^2=2*x^8+9*x^7+11*x^6+6*x^4+6*x^3+5*x^2+10*x+11", "y^2=2*x^8+4*x^7+x^6+3*x^5+5*x^4+7*x^3+9*x^2+11*x+11", "y^2=2*x^8+7*x^7+8*x^6+12*x^4+x^3+6*x^2+5*x+10", "y^2=2*x^8+6*x^7+7*x^6+3*x^5+11*x^4+8*x^3+11*x^2+12*x+7", "y^2=x^8+2*x^7+7*x^6+2*x^5+10*x^4+x^2+9*x+8", "y^2=x^8+6*x^7+11*x^6+6*x^5+2*x^4+3*x^3+4*x^2+10*x+1", "y^2=x^8+9*x^7+12*x^6+2*x^5+6*x^4+8*x^3+4*x^2+9*x+7", "y^2=2*x^8+11*x^7+2*x^6+8*x^5+10*x^4+6*x^3+9*x^2+3*x+10", "y^2=2*x^8+4*x^7+4*x^6+4*x^5+11*x^4+2*x^3+x^2+7*x+11", "y^2=2*x^8+5*x^7+12*x^6+12*x^5+4*x^4+7*x^3+5*x^2+11*x+9", "y^2=2*x^8+11*x^7+11*x^6+5*x^5+x^4+12*x^3+2*x^2+3*x+12", "y^2=2*x^8+5*x^7+10*x^6+6*x^5+6*x^4+7*x^3+x^2+9*x+12", "y^2=2*x^8+5*x^7+7*x^6+8*x^5+10*x^4+3*x^2+x+12", "y^2=x^8+12*x^7+10*x^5+4*x^3+4*x^2+x+11", "y^2=2*x^8+5*x^7+3*x^6+6*x^5+3*x^4+4*x^3+x^2+12*x+10", "y^2=x^8+8*x^7+4*x^6+10*x^5+2*x^4+11*x^3+11*x^2+x+7", "y^2=2*x^8+5*x^7+x^6+2*x^5+11*x^4+2*x^3+2*x^2+5*x+7", "y^2=2*x^8+4*x^7+7*x^6+2*x^5+3*x^4+12*x^3+12*x^2+4*x+9", "y^2=2*x^8+8*x^7+x^6+5*x^4+8*x^3+10*x^2+8*x+8", "y^2=2*x^8+3*x^7+2*x^6+5*x^5+6*x^4+x^3+4*x^2+12*x+2", "y^2=x^8+2*x^7+2*x^6+3*x^5+4*x^4+7*x^3+3*x+10", "y^2=x^8+3*x^7+6*x^6+7*x^5+2*x^4+11*x^3+8*x^2+4*x+11", "y^2=2*x^8+5*x^7+11*x^6+3*x^5+3*x^4+x^3+10*x^2+3*x+11", "y^2=x^8+8*x^7+2*x^6+12*x^5+4*x^4+12*x^3+5*x^2+8*x+8", "y^2=2*x^8+6*x^7+2*x^6+11*x^5+12*x^4+8*x^3+4*x^2+3*x+9", "y^2=x^8+11*x^7+3*x^6+3*x^5+10*x^4+12*x^3+2*x+2", "y^2=2*x^8+10*x^7+8*x^6+6*x^5+9*x^4+8*x^3+5*x^2+11*x+4", "y^2=2*x^8+10*x^6+8*x^5+3*x^4+5*x^3+11*x^2+12*x+4", "y^2=2*x^8+2*x^7+7*x^6+9*x^5+4*x^4+12*x^3+5*x^2+7*x+10", "y^2=2*x^8+9*x^7+7*x^6+6*x^5+11*x^4+x^3+6*x^2+5*x+6", "y^2=2*x^8+11*x^7+12*x^6+6*x^4+10*x^3+6*x^2+7*x+8", "y^2=2*x^8+8*x^7+7*x^6+2*x^5+3*x^4+5*x^2+4*x+5", "y^2=x^8+x^7+8*x^6+9*x^5+6*x^4+7*x^3+3*x^2+x+9", "y^2=x^8+2*x^7+12*x^6+10*x^5+x^4+8*x^3+10*x^2+x+9", "y^2=x^8+7*x^7+4*x^6+11*x^5+6*x^4+7*x^3+10*x^2+6*x+3", "y^2=x^8+12*x^7+4*x^5+3*x^4+6*x^2+2*x+4", "y^2=x^8+7*x^7+3*x^6+7*x^5+6*x^4+8*x^3+3*x^2+8*x+2", "y^2=x^8+12*x^7+11*x^5+4*x^4+10*x^3+5*x^2+7*x+10", "y^2=2*x^8+x^7+3*x^6+4*x^5+11*x^4+6*x^3+12*x^2+5*x+4", "y^2=2*x^8+12*x^7+8*x^6+4*x^5+x^4+10*x^3+4*x^2+3", "y^2=2*x^8+2*x^7+6*x^5+10*x^4+5*x^3+11*x^2+2*x+12", "y^2=2*x^8+10*x^7+6*x^6+2*x^5+2*x^3+2*x^2+9*x+4", "y^2=2*x^8+3*x^7+5*x^6+8*x^5+11*x^4+11*x^3+2*x^2+4*x+9", "y^2=2*x^8+2*x^6+12*x^5+5*x^4+11*x^3+4*x^2+x+10", "y^2=2*x^8+x^7+2*x^5+6*x^4+x^3+5*x^2+6*x+2", "y^2=2*x^8+3*x^7+4*x^6+8*x^5+6*x^4+3*x^3+2*x^2+5*x+9", "y^2=x^8+5*x^6+4*x^5+4*x^4+9*x^3+5*x^2+4*x+8", "y^2=x^8+2*x^6+11*x^5+4*x^4+9*x^3+8*x^2+9*x+3", "y^2=2*x^8+9*x^7+6*x^6+5*x^5+x^4+8*x^2+6*x+12", "y^2=x^8+8*x^7+5*x^6+7*x^5+10*x^4+11*x^2+11*x+11", "y^2=x^8+2*x^6+9*x^5+9*x^4+x^3+6*x^2+7*x+2", "y^2=2*x^8+9*x^7+11*x^6+5*x^5+8*x^4+5*x^3+2*x^2+4*x+7", "y^2=x^8+11*x^7+8*x^6+2*x^5+9*x^4+10*x^2+5", "y^2=2*x^8+12*x^7+2*x^6+8*x^5+4*x^4+3*x^3+5*x^2+6", "y^2=2*x^8+9*x^7+4*x^6+x^5+4*x^4+10*x^3+6*x^2+12*x+6", "y^2=x^8+8*x^7+4*x^6+8*x^5+8*x^4+6*x^3+12*x^2+6*x+10", "y^2=2*x^8+12*x^7+3*x^5+9*x^4+9*x^3+2*x^2+11*x+10", "y^2=x^8+6*x^7+5*x^6+11*x^5+11*x^4+6*x^3+3*x^2+6", "y^2=2*x^8+12*x^7+8*x^5+10*x^3+x^2+12*x+12", "y^2=x^8+7*x^7+3*x^6+x^5+8*x^4+3*x^3+7", "y^2=2*x^8+x^7+10*x^6+x^5+12*x^4+11*x^3+3*x^2+5*x+9", "y^2=x^8+2*x^7+9*x^6+6*x^5+2*x^4+9*x^3+3*x^2+4*x+9", "y^2=x^8+10*x^7+10*x^6+9*x^5+9*x^4+7*x^3+11*x^2+7*x+9", "y^2=x^8+5*x^7+12*x^6+11*x^5+2*x^4+3*x^3+2*x^2+2*x+3", "y^2=2*x^8+11*x^7+2*x^6+6*x^5+7*x^4+2*x^3+x^2+5"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 1, "dim3_factors": 1, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 3, "galois_groups": ["6T11"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 1, "geom_dim3_factors": 1, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 6, "geometric_extension_degree": 1, "geometric_galois_groups": ["6T11"], "geometric_number_fields": ["6.0.25951344.1"], "geometric_splitting_field": "6.0.25951344.1", "geometric_splitting_polynomials": [[29, 12, 21, -2, 5, -2, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 138, "is_cyclic": false, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "label": "3.13.ac_t_aci", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 4, "newton_elevation": 0, "noncyclic_primes": [2], "number_fields": ["6.0.25951344.1"], "p": 13, "p_rank": 3, "p_rank_deficit": 0, "poly": [1, -2, 19, -60, 247, -338, 2197], "poly_str": "1 -2 19 -60 247 -338 2197 ", "primitive_models": [], "q": 13, "real_poly": [1, -2, -20, -8], "simple_distinct": ["3.13.ac_t_aci"], "simple_factors": ["3.13.ac_t_aciA"], "simple_multiplicities": [1], "slopes": ["0A", "0B", "0C", "1A", "1B", "1C"], "splitting_field": "6.0.25951344.1", "splitting_polynomials": [[29, 12, 21, -2, 5, -2, 1]], "twist_count": 2, "twists": [["3.13.c_t_ci", "3.169.bi_xr_nbo", 2]]}