# Stored data for abelian variety isogeny class 2.97.abc_pa, downloaded from the LMFDB on 30 October 2025. {"abvar_count": 7056, "abvar_counts": [7056, 88510464, 835403312016, 7840765305225216, 73744720761342926736, 693842455032982711013376, 6528360795824404696553863056, 61425362573258679843953845469184, 577951260583274376046278449742754704, 5437943429136960821825249151610865946624], "abvar_counts_str": "7056 88510464 835403312016 7840765305225216 73744720761342926736 693842455032982711013376 6528360795824404696553863056 61425362573258679843953845469184 577951260583274376046278449742754704 5437943429136960821825249151610865946624 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.248359198325529, 0.248359198325529], "center_dim": 2, "curve_count": 70, "curve_counts": [70, 9406, 915334, 88566910, 8587609030, 832972117822, 80798259987718, 7837433240560894, 760231056076708678, 73742412687722993086], "curve_counts_str": "70 9406 915334 88566910 8587609030 832972117822 80798259987718 7837433240560894 760231056076708678 73742412687722993086 ", "curves": ["y^2=64*x^6+43*x^5+93*x^4+78*x^3+93*x^2+43*x+64", "y^2=91*x^6+91*x^5+73*x^4+4*x^3+66*x^2+88*x+49", "y^2=6*x^6+82*x^5+65*x^4+40*x^3+79*x^2+7*x+93", "y^2=x^6+36*x^5+44*x^4+35*x^3+44*x^2+36*x+1", "y^2=22*x^6+78*x^5+28*x^4+68*x^3+74*x^2+41*x+8", "y^2=81*x^6+31*x^5+79*x^4+11*x^3+79*x^2+31*x+81", "y^2=59*x^6+37*x^5+40*x^4+62*x^3+83*x^2+46*x+5", "y^2=43*x^6+33*x^5+63*x^4+51*x^3+63*x^2+33*x+43", "y^2=73*x^6+50*x^5+34*x^4+25*x^3+82*x^2+68*x+37", "y^2=41*x^6+94*x^4+94*x^2+41", "y^2=59*x^6+88*x^5+92*x^4+69*x^3+92*x^2+88*x+59", "y^2=50*x^6+3*x^5+22*x^4+16*x^3+22*x^2+3*x+50", "y^2=62*x^6+86*x^4+86*x^2+62", "y^2=87*x^6+44*x^5+43*x^4+46*x^3+43*x^2+44*x+87", "y^2=5*x^6+4*x^5+36*x^4+79*x^3+36*x^2+4*x+5", "y^2=20*x^6+25*x^5+49*x^4+90*x^3+49*x^2+25*x+20", "y^2=15*x^6+62*x^4+62*x^2+15", "y^2=52*x^6+57*x^5+43*x^4+10*x^3+49*x^2+63*x+63", "y^2=85*x^6+88*x^5+8*x^4+44*x^3+8*x^2+88*x+85", "y^2=34*x^6+61*x^5+78*x^4+52*x^3+78*x^2+61*x+34", "y^2=91*x^6+45*x^5+x^4+3*x^3+81*x^2+74*x+35", "y^2=48*x^6+58*x^5+9*x^4+92*x^3+64*x^2+90*x+48", "y^2=15*x^6+50*x^5+8*x^4+63*x^3+11*x^2+43*x+82", "y^2=26*x^6+26*x^5+41*x^4+30*x^3+41*x^2+26*x+26", "y^2=33*x^6+22*x^5+46*x^4+96*x^3+2*x^2+30*x+5", "y^2=18*x^6+44*x^5+58*x^4+50*x^3+85*x^2+81*x+5", "y^2=50*x^6+81*x^4+81*x^2+50", "y^2=47*x^6+81*x^5+18*x^4+65*x^3+35*x^2+67*x+1", "y^2=x^6+44*x^3+18", "y^2=58*x^6+69*x^5+25*x^4+44*x^3+25*x^2+69*x+58", "y^2=82*x^6+30*x^5+29*x^4+5*x^3+29*x^2+30*x+82", "y^2=82*x^6+30*x^5+78*x^4+83*x^3+79*x^2+50*x+45", "y^2=37*x^6+56*x^5+34*x^3+5*x^2+45*x+36", "y^2=74*x^6+45*x^5+55*x^4+6*x^3+55*x^2+45*x+74", "y^2=90*x^6+39*x^5+71*x^4+17*x^3+35*x^2+85*x+20", "y^2=68*x^6+81*x^5+9*x^4+59*x^3+65*x^2+54*x+77", "y^2=76*x^6+48*x^4+48*x^2+76", "y^2=20*x^6+71*x^5+36*x^4+80*x^3+65*x^2+37*x+21", "y^2=21*x^6+68*x^5+58*x^4+53*x^3+4*x^2+4*x+34", "y^2=x^6+x^3+27", "y^2=82*x^6+59*x^5+78*x^4+64*x^3+79*x^2+48*x+55", "y^2=16*x^6+25*x^4+25*x^2+16", "y^2=50*x^6+30*x^5+61*x^4+54*x^3+61*x^2+30*x+50", "y^2=73*x^6+13*x^5+83*x^4+81*x^3+21*x^2+5*x+81", "y^2=62*x^6+78*x^5+51*x^4+19*x^3+84*x^2+76*x+48", "y^2=91*x^6+85*x^5+27*x^4+46*x^3+27*x^2+85*x+91", "y^2=78*x^6+36*x^5+18*x^4+47*x^3+16*x^2+50*x+46", "y^2=52*x^6+20*x^5+39*x^4+46*x^3+39*x^2+20*x+52", "y^2=62*x^6+57*x^5+34*x^4+87*x^3+77*x^2+60*x+49", "y^2=x^6+96", "y^2=8*x^6+27*x^5+24*x^4+58*x^3+74*x^2+24*x+74", "y^2=78*x^6+62*x^5+46*x^4+20*x^3+46*x^2+62*x+78", "y^2=73*x^6+29*x^5+34*x^4+6*x^3+34*x^2+29*x+73", "y^2=x^6+9*x^3+50", "y^2=65*x^6+64*x^5+12*x^4+79*x^3+40*x^2+47*x+34", "y^2=6*x^6+x^5+5*x^4+77*x^3+91*x^2+53*x+16", "y^2=23*x^6+58*x^5+51*x^4+85*x^3+85*x+2", "y^2=84*x^6+74*x^5+69*x^4+12*x^3+69*x^2+74*x+84", "y^2=23*x^6+12*x^5+59*x^4+19*x^3+84*x^2+30*x+20", "y^2=20*x^6+72*x^5+56*x^4+91*x^3+76*x^2+95*x+77", "y^2=67*x^6+27*x^5+58*x^4+90*x^3+28*x^2+65*x+77", "y^2=48*x^6+48*x^5+23*x^4+90*x^3+23*x^2+48*x+48"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.3.1"], "geometric_splitting_field": "2.0.3.1", "geometric_splitting_polynomials": [[1, -1, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 62, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 62, "label": "2.97.abc_pa", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.3.1"], "p": 97, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -28, 390, -2716, 9409], "poly_str": "1 -28 390 -2716 9409 ", "primitive_models": [], "q": 97, "real_poly": [1, -28, 196], "simple_distinct": ["1.97.ao"], "simple_factors": ["1.97.aoA", "1.97.aoB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.3.1", "splitting_polynomials": [[1, -1, 1]], "twist_count": 24, "twists": [["2.97.a_ac", "2.9409.ae_bbvy", 2], ["2.97.bc_pa", "2.9409.ae_bbvy", 2], ["2.97.at_ke", "2.912673.dyi_hwmyg", 3], ["2.97.ak_il", "2.912673.dyi_hwmyg", 3], ["2.97.f_acu", "2.912673.dyi_hwmyg", 3], ["2.97.o_dv", "2.912673.dyi_hwmyg", 3], ["2.97.bm_vj", "2.912673.dyi_hwmyg", 3], ["2.97.a_c", "2.88529281.cdrg_bssbceo", 4], ["2.97.abm_vj", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.abh_rs", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.ay_ld", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.ao_dv", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.aj_eu", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.af_acu", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.a_agl", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.a_gn", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.j_eu", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.k_il", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.t_ke", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.y_ld", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.bh_rs", "2.832972004929.glaa_hzvexkqty", 6], ["2.97.a_agn", "2.693842360995438000295041.pybddvhnw_drftcjjzkwzevujfkg", 12], ["2.97.a_gl", "2.693842360995438000295041.pybddvhnw_drftcjjzkwzevujfkg", 12]]}