# Stored data for abelian variety isogeny class 2.89.s_jz, downloaded from the LMFDB on 29 October 2025. {"abvar_count": 9801, "abvar_counts": [9801, 64304361, 494625263616, 3937396214255625, 31182737242213990521, 246989019636321317093376, 1956411378010104587554761801, 15496732087321006565712279455625, 122749608812563167407828312524886016, 972299657969890306789527355938573503241], "abvar_counts_str": "9801 64304361 494625263616 3937396214255625 31182737242213990521 246989019636321317093376 1956411378010104587554761801 15496732087321006565712279455625 122749608812563167407828312524886016 972299657969890306789527355938573503241 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.658275487259996, 0.658275487259996], "center_dim": 2, "curve_count": 108, "curve_counts": [108, 8116, 701622, 62755108, 5584241628, 496978506286, 44231343743772, 3936588973904068, 350356401406173798, 31181719935708009556], "curve_counts_str": "108 8116 701622 62755108 5584241628 496978506286 44231343743772 3936588973904068 350356401406173798 31181719935708009556 ", "curves": ["y^2=45*x^6+20*x^5+50*x^4+53*x^3+8*x^2+71*x+22", "y^2=72*x^6+84*x^5+53*x^4+79*x^3+19*x^2+84*x+60", "y^2=10*x^6+10*x^5+81*x^4+55*x^3+45*x^2+68*x+29", "y^2=81*x^6+37*x^5+60*x^4+44*x^3+71*x^2+87*x+46", "y^2=16*x^6+10*x^5+22*x^4+53*x^3+39*x^2+34*x+22", "y^2=42*x^6+8*x^5+39*x^4+16*x^3+45*x^2+13*x+19", "y^2=3*x^6+87*x^5+20*x^4+86*x^3+26*x^2+48*x+9", "y^2=36*x^6+87*x^5+43*x^4+54*x^3+85*x^2+11*x+82", "y^2=7*x^6+23*x^5+32*x^4+27*x^3+48*x^2+38*x+62", "y^2=70*x^6+30*x^5+49*x^4+75*x^3+71*x^2+10*x+29", "y^2=88*x^6+52*x^5+43*x^4+14*x^3+x^2+61*x+6", "y^2=57*x^6+29*x^5+81*x^4+15*x^3+25*x^2+76*x+81", "y^2=12*x^6+65*x^5+70*x^4+74*x^3+x^2+28*x+28", "y^2=2*x^6+53*x^5+55*x^4+86*x^3+10*x^2+40*x+85", "y^2=34*x^6+77*x^5+80*x^3+58*x^2+17*x+66", "y^2=21*x^6+43*x^5+84*x^4+9*x^3+23*x^2+41*x+41", "y^2=72*x^6+54*x^5+64*x^4+9*x^3+5*x^2+52*x+87", "y^2=16*x^6+74*x^5+75*x^4+30*x^3+82*x^2+8*x+26", "y^2=22*x^6+27*x^5+29*x^4+14*x^3+6*x^2+51*x+71", "y^2=63*x^6+15*x^5+85*x^4+75*x^3+10*x^2+27*x+28", "y^2=15*x^6+33*x^5+6*x^4+15*x^3+73*x^2+27*x+26", "y^2=47*x^6+14*x^5+62*x^4+23*x^3+63*x^2+7*x+49", "y^2=59*x^6+55*x^5+38*x^4+52*x^3+61*x^2+20*x+14", "y^2=36*x^6+23*x^5+63*x^4+47*x^3+59*x^2+48*x+9", "y^2=19*x^6+39*x^5+10*x^4+58*x^3+36*x^2+64*x+52", "y^2=30*x^6+15*x^5+69*x^4+29*x^3+15*x^2+74*x+10", "y^2=79*x^6+51*x^5+11*x^4+47*x^3+6*x^2+78*x+55", "y^2=57*x^6+9*x^5+85*x^4+23*x^3+2*x^2+69*x+4", "y^2=15*x^6+72*x^5+8*x^4+21*x^3+42*x^2+71*x+86", "y^2=39*x^6+86*x^5+33*x^4+4*x^3+33*x^2+86*x+39", "y^2=15*x^6+70*x^5+x^4+17*x^3+65*x^2+39*x+24", "y^2=11*x^6+38*x^5+40*x^4+15*x^3+71*x^2+74*x+81", "y^2=60*x^6+29*x^5+76*x^4+7*x^3+43*x^2+42*x+78", "y^2=53*x^6+54*x^5+3*x^4+59*x^3+35*x^2+52*x+1", "y^2=20*x^6+17*x^5+58*x^4+32*x^3+26*x^2+34*x+21", "y^2=42*x^6+16*x^5+25*x^4+29*x^3+84*x^2+22*x+73", "y^2=48*x^6+62*x^5+40*x^4+22*x^3+20*x^2+60*x+6", "y^2=85*x^6+35*x^5+84*x^4+7*x^3+74*x^2+61*x+26", "y^2=27*x^6+2*x^5+6*x^4+15*x^3+49*x^2+86*x+4", "y^2=74*x^6+70*x^5+66*x^4+30*x^3+60*x^2+63*x+12", "y^2=62*x^6+36*x^5+37*x^4+14*x^3+35*x^2+72*x+74", "y^2=81*x^6+50*x^5+10*x^4+70*x^3+11*x^2+16*x+10", "y^2=29*x^6+21*x^5+12*x^4+52*x^2+66*x+66", "y^2=87*x^6+36*x^5+5*x^4+36*x^3+30*x^2+61*x+10", "y^2=5*x^6+10*x^5+80*x^4+62*x^3+61*x^2+57*x+56", "y^2=5*x^6+61*x^5+79*x^4+49*x^3+67*x^2+14*x+39", "y^2=11*x^6+13*x^5+59*x^4+62*x^3+23*x^2+38*x+68", "y^2=63*x^6+55*x^5+35*x^4+32*x^3+54*x^2+55*x+26", "y^2=26*x^6+71*x^5+26*x^4+50*x^3+13*x^2+30*x+61", "y^2=46*x^6+68*x^5+18*x^4+88*x^3+41*x^2+5*x+59", "y^2=84*x^6+68*x^5+37*x^4+x^3+30*x^2+10*x+82", "y^2=80*x^6+87*x^5+66*x^4+65*x^3+75*x^2+25*x+53", "y^2=71*x^6+13*x^5+71*x^4+75*x^3+16*x^2+74*x+50", "y^2=78*x^6+16*x^5+23*x^4+27*x^3+60*x^2+50*x+9", "y^2=87*x^6+25*x^5+44*x^4+33*x^3+64*x^2+61*x+68", "y^2=18*x^6+85*x^5+32*x^4+57*x^3+47*x^2+39*x+44", "y^2=35*x^6+84*x^5+10*x^4+17*x^3+45*x^2+10*x+41", "y^2=36*x^6+6*x^5+10*x^4+65*x^3+16*x^2+31*x+35", "y^2=85*x^6+x^5+22*x^4+6*x^3+11*x^2+67*x+44", "y^2=50*x^6+30*x^5+59*x^4+39*x^3+42*x^2+64*x+50", "y^2=40*x^6+68*x^5+87*x^4+71*x^3+x^2+17*x+84", "y^2=68*x^6+82*x^5+69*x^4+39*x^3+55*x^2+75*x+71", "y^2=77*x^6+86*x^5+79*x^4+74*x^3+20*x^2+77*x+7", "y^2=47*x^6+33*x^5+2*x^4+86*x^3+85*x^2+23*x+20", "y^2=39*x^6+55*x^5+52*x^4+76*x^3+62*x^2+72*x+1"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.11.1"], "geometric_splitting_field": "2.0.11.1", "geometric_splitting_polynomials": [[3, -1, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 65, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 65, "label": "2.89.s_jz", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.11.1"], "p": 89, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 18, 259, 1602, 7921], "poly_str": "1 18 259 1602 7921 ", "primitive_models": [], "q": 89, "real_poly": [1, 18, 81], "simple_distinct": ["1.89.j"], "simple_factors": ["1.89.jA", "1.89.jB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.11.1", "splitting_polynomials": [[3, -1, 1]], "twist_count": 6, "twists": [["2.89.as_jz", "2.7921.hm_bljf", 2], ["2.89.a_dt", "2.7921.hm_bljf", 2], ["2.89.aj_ai", "2.704969.aeyu_jfrcg", 3], ["2.89.a_adt", "2.62742241.taw_obeccx", 4], ["2.89.j_ai", "2.496981290961.agcliy_obdcodtxm", 6]]}