# Stored data for abelian variety isogeny class 2.83.y_ly, downloaded from the LMFDB on 04 October 2025. {"abvar_count": 9216, "abvar_counts": [9216, 47775744, 325502198784, 2253554325651456, 15515608313292604416, 106889717399459712270336, 736365800008387934860133376, 5072819930416729534512186261504, 34946659099680026152773399619101696, 240747534273847068047321184173241729024], "abvar_counts_str": "9216 47775744 325502198784 2253554325651456 15515608313292604416 106889717399459712270336 736365800008387934860133376 5072819930416729534512186261504 34946659099680026152773399619101696 240747534273847068047321184173241729024 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.72884493646906, 0.72884493646906], "center_dim": 2, "curve_count": 108, "curve_counts": [108, 6934, 569268, 47484910, 3938930748, 326939485318, 27136070767620, 2252292068511454, 186940255589498124, 15516041196923450614], "curve_counts_str": "108 6934 569268 47484910 3938930748 326939485318 27136070767620 2252292068511454 186940255589498124 15516041196923450614 ", "curves": ["y^2=53*x^6+36*x^5+29*x^4+44*x^3+29*x^2+36*x+53", "y^2=26*x^6+x^5+6*x^4+4*x^3+6*x^2+x+26", "y^2=57*x^6+82*x^5+43*x^4+68*x^3+42*x^2+46*x+39", "y^2=78*x^6+6*x^5+5*x^4+12*x^3+5*x^2+6*x+78", "y^2=3*x^6+76*x^4+76*x^2+3", "y^2=72*x^6+59*x^5+23*x^4+43*x^3+23*x^2+59*x+72", "y^2=37*x^6+45*x^5+72*x^4+81*x^3+79*x^2+67*x+70", "y^2=19*x^6+78*x^5+36*x^4+19*x^3+75*x^2+10*x+73", "y^2=42*x^6+53*x^5+31*x^4+57*x^3+x^2+72*x+76", "y^2=36*x^6+36*x^5+54*x^4+16*x^3+45*x^2+25*x+7", "y^2=4*x^6+75*x^5+72*x^4+18*x^3+53*x^2+77*x+61", "y^2=30*x^6+76*x^5+36*x^4+2*x^3+7*x^2+60*x+33", "y^2=64*x^6+49*x^5+60*x^4+14*x^3+32*x^2+63*x+51", "y^2=50*x^6+35*x^5+5*x^4+59*x^3+5*x^2+35*x+50", "y^2=79*x^6+36*x^4+36*x^2+79", "y^2=42*x^6+55*x^4+55*x^2+42", "y^2=36*x^6+5*x^5+79*x^4+63*x^3+43*x^2+2*x+61", "y^2=77*x^6+38*x^4+38*x^2+77", "y^2=19*x^6+4*x^4+4*x^2+19", "y^2=15*x^6+27*x^5+3*x^4+70*x^3+40*x^2+69*x+50", "y^2=14*x^5+55*x^4+70*x^3+55*x^2+14*x", "y^2=40*x^6+57*x^4+57*x^2+40", "y^2=23*x^6+31*x^5+20*x^4+74*x^3+71*x^2+51*x+3", "y^2=42*x^6+41*x^5+42*x^4+19*x^3+35*x^2+40*x+22", "y^2=54*x^6+21*x^5+81*x^4+22*x^3+7*x^2+29*x+71", "y^2=69*x^6+4*x^5+45*x^4+61*x^3+45*x^2+4*x+69", "y^2=75*x^6+70*x^5+22*x^4+4*x^3+79*x^2+46*x+75", "y^2=30*x^6+5*x^5+8*x^4+9*x^3+8*x^2+5*x+30", "y^2=14*x^6+66*x^5+40*x^4+56*x^3+40*x^2+66*x+14", "y^2=79*x^6+68*x^5+61*x^4+63*x^3+61*x^2+68*x+79", "y^2=4*x^5+74*x^4+56*x^3+32*x^2+27*x", "y^2=27*x^6+17*x^5+57*x^4+69*x^3+57*x^2+17*x+27", "y^2=69*x^6+6*x^5+18*x^4+17*x^3+58*x^2+14*x+12", "y^2=37*x^5+35*x^4+78*x^3+32*x^2+81*x", "y^2=70*x^6+42*x^5+61*x^4+56*x^3+31*x^2+22*x+59", "y^2=32*x^6+22*x^4+22*x^2+32", "y^2=37*x^6+48*x^5+2*x^4+9*x^3+2*x^2+48*x+37", "y^2=48*x^6+46*x^5+51*x^4+59*x^3+51*x^2+46*x+48", "y^2=75*x^6+5*x^5+8*x^4+38*x^3+8*x^2+5*x+75", "y^2=19*x^6+37*x^5+70*x^4+50*x^3+79*x^2+26*x+50", "y^2=37*x^6+67*x^5+9*x^4+41*x^3+69*x^2+74*x+61", "y^2=60*x^6+33*x^5+67*x^4+71*x^3+39*x^2+68*x+8", "y^2=30*x^6+69*x^5+56*x^4+70*x^3+47*x^2+12*x+25", "y^2=30*x^6+15*x^5+4*x^4+45*x^3+28*x^2+71*x+81", "y^2=x^6+56*x^5+4*x^4+78*x^3+7*x^2+47*x+30", "y^2=40*x^6+56*x^5+40*x^4+56*x^3+40*x^2+56*x+40", "y^2=36*x^6+77*x^4+77*x^2+36", "y^2=65*x^6+3*x^5+20*x^4+30*x^3+24*x^2+x+26", "y^2=23*x^6+26*x^5+53*x^4+19*x^3+53*x^2+26*x+23", "y^2=46*x^6+19*x^5+13*x^4+37*x^3+13*x^2+19*x+46", "y^2=25*x^6+33*x^5+70*x^4+17*x^3+17*x^2+25*x+77", "y^2=82*x^5+37*x^4+45*x^3+37*x^2+82*x", "y^2=60*x^6+62*x^5+42*x^4+74*x^3+42*x^2+62*x+60", "y^2=68*x^6+80*x^5+55*x^4+73*x^3+66*x^2+82*x+77", "y^2=66*x^6+5*x^5+76*x^4+41*x^3+76*x^2+5*x+66", "y^2=27*x^6+58*x^5+7*x^4+27*x^3+80*x^2+3*x+34", "y^2=27*x^6+58*x^5+55*x^4+61*x^3+39*x^2+67*x+30", "y^2=33*x^6+37*x^5+20*x^4+76*x^3+x^2+8*x+14", "y^2=4*x^6+18*x^5+15*x^4+75*x^3+15*x^2+18*x+4", "y^2=63*x^6+41*x^5+9*x^4+40*x^3+26*x^2+3*x+70", "y^2=74*x^6+31*x^5+35*x^4+42*x^3+35*x^2+31*x+74", "y^2=28*x^6+62*x^5+10*x^4+38*x^3+75*x^2+43*x+68", "y^2=82*x^6+37*x^5+80*x^4+36*x^3+9*x^2+6*x+31", "y^2=27*x^6+68*x^5+20*x^4+41*x^3+11*x^2+41*x+21", "y^2=3*x^6+17*x^5+81*x^4+20*x^3+81*x^2+17*x+3", "y^2=18*x^6+12*x^5+28*x^4+44*x^3+28*x^2+12*x+18", "y^2=62*x^6+9*x^5+14*x^4+74*x^3+50*x^2+3*x+58", "y^2=57*x^6+49*x^5+6*x^4+40*x^3+18*x^2+26*x+45", "y^2=42*x^6+7*x^5+27*x^4+82*x^3+7*x^2+4*x+80", "y^2=37*x^6+74*x^5+17*x^4+60*x^3+41*x^2+43*x+25", "y^2=5*x^6+37*x^5+67*x^4+37*x^3+67*x^2+37*x+5", "y^2=56*x^6+53*x^5+51*x^4+50*x^3+51*x^2+53*x+56", "y^2=23*x^6+61*x^5+19*x^4+5*x^3+19*x^2+61*x+23", "y^2=5*x^5+65*x^4+4*x^3+44*x^2+35*x", "y^2=70*x^6+9*x^5+60*x^4+25*x^3+60*x^2+9*x+70", "y^2=49*x^6+71*x^5+33*x^4+38*x^3+10*x^2+46*x+68", "y^2=80*x^6+33*x^5+45*x^4+54*x^3+45*x^2+33*x+80", "y^2=16*x^6+x^5+76*x^4+73*x^3+52*x^2+23*x+29", "y^2=50*x^6+4*x^5+76*x^4+36*x^3+32*x^2+26*x+32", "y^2=40*x^6+61*x^5+31*x^4+7*x^3+35*x^2+58*x+7", "y^2=4*x^5+76*x^4+2*x^3+14*x^2+16*x", "y^2=67*x^6+39*x^5+22*x^4+15*x^3+42*x^2+66*x+76", "y^2=40*x^6+54*x^5+54*x^4+67*x^3+54*x^2+54*x+40", "y^2=17*x^6+63*x^5+2*x^4+19*x^3+19*x^2+45*x+37", "y^2=38*x^6+42*x^5+20*x^4+58*x^3+20*x^2+42*x+38", "y^2=35*x^6+57*x^5+7*x^4+x^3+7*x^2+57*x+35", "y^2=56*x^5+61*x^4+61*x^3+75*x^2+76*x", "y^2=71*x^6+55*x^5+81*x^4+80*x^3+81*x^2+55*x+71", "y^2=9*x^6+46*x^4+46*x^2+9", "y^2=49*x^6+38*x^5+11*x^4+6*x^3+34*x^2+8*x+4", "y^2=58*x^6+x^5+37*x^4+37*x^2+x+58", "y^2=72*x^6+6*x^5+57*x^4+60*x^3+43*x^2+53*x+8", "y^2=73*x^6+78*x^5+67*x^4+80*x^3+67*x^2+78*x+73", "y^2=42*x^6+77*x^5+51*x^4+38*x^3+51*x^2+77*x+42", "y^2=16*x^6+47*x^5+82*x^4+61*x^3+60*x^2+46*x+37", "y^2=37*x^6+10*x^5+58*x^4+55*x^3+58*x^2+10*x+37", "y^2=51*x^6+10*x^4+10*x^2+51", "y^2=6*x^6+40*x^4+43*x^3+65*x^2+76", "y^2=45*x^6+72*x^5+37*x^4+44*x^3+37*x^2+72*x+45", "y^2=64*x^6+13*x^5+49*x^4+42*x^3+49*x^2+13*x+64", "y^2=48*x^6+63*x^5+40*x^4+42*x^3+40*x^2+63*x+48", "y^2=25*x^6+69*x^5+30*x^4+64*x^3+30*x^2+69*x+25", "y^2=74*x^6+25*x^4+4*x^3+29*x^2+53", "y^2=56*x^6+12*x^5+11*x^4+48*x^3+11*x^2+12*x+56", "y^2=26*x^6+67*x^5+68*x^4+63*x^3+36*x^2+34*x+33"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.47.1"], "geometric_splitting_field": "2.0.47.1", "geometric_splitting_polynomials": [[12, -1, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 105, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 105, "label": "2.83.y_ly", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.47.1"], "p": 83, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 24, 310, 1992, 6889], "poly_str": "1 24 310 1992 6889 ", "primitive_models": [], "q": 83, "real_poly": [1, 24, 144], "simple_distinct": ["1.83.m"], "simple_factors": ["1.83.mA", "1.83.mB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.47.1", "splitting_polynomials": [[12, -1, 1]], "twist_count": 6, "twists": [["2.83.ay_ly", "2.6889.bs_vco", 2], ["2.83.a_w", "2.6889.bs_vco", 2], ["2.83.am_cj", "2.571787.adsy_fzkfe", 3], ["2.83.a_aw", "2.47458321.bniq_wwlouo", 4], ["2.83.m_cj", "2.326940373369.abynrw_ebyybkduc", 6]]}