# Stored data for abelian variety isogeny class 2.79.abc_nq, downloaded from the LMFDB on 17 September 2025. {"abvar_count": 4356, "abvar_counts": [4356, 38489616, 243654780996, 1517968871654400, 9468948043662723396, 59091830256010395791376, 368790142115733430983775236, 2301619007780831593417903718400, 14364404901402089919142369319076996, 89648251867627602805834902930505779216], "abvar_counts_str": "4356 38489616 243654780996 1517968871654400 9468948043662723396 59091830256010395791376 368790142115733430983775236 2301619007780831593417903718400 14364404901402089919142369319076996 89648251867627602805834902930505779216 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.211343260462345, 0.211343260462345], "center_dim": 2, "curve_count": 52, "curve_counts": [52, 6166, 494188, 38972158, 3077274772, 243088768726, 19203910119628, 1517108722031998, 119851594662830452, 9468276071091907606], "curve_counts_str": "52 6166 494188 38972158 3077274772 243088768726 19203910119628 1517108722031998 119851594662830452 9468276071091907606 ", "curves": ["y^2=43*x^6+30*x^4+30*x^2+43", "y^2=2*x^5+18*x^4+76*x^3+60*x^2+6*x+6", "y^2=73*x^6+70*x^5+47*x^4+64*x^3+77*x^2+8*x+68", "y^2=39*x^6+50*x^5+32*x^4+32*x^3+42*x^2+67*x+60", "y^2=11*x^6+28*x^5+x^4+26*x^3+32*x^2+74*x+50", "y^2=69*x^6+73*x^5+42*x^4+53*x^3+37*x^2+18*x+74", "y^2=27*x^6+78*x^5+62*x^4+27*x^3+23*x^2+29*x+70", "y^2=20*x^6+72*x^5+72*x^4+50*x^3+27*x^2+39*x+77", "y^2=30*x^6+48*x^5+25*x^4+9*x^3+75*x^2+3*x+56", "y^2=x^6+x^3+8", "y^2=60*x^6+16*x^5+72*x^4+7*x^3+32*x^2+49*x+29", "y^2=66*x^6+65*x^5+45*x^4+56*x^3+78*x^2+29*x+75", "y^2=14*x^6+48*x^5+8*x^4+73*x^3+18*x^2+37*x+12", "y^2=50*x^6+8*x^5+30*x^4+74*x^3+30*x^2+8*x+50", "y^2=74*x^6+12*x^5+73*x^4+61*x^3+73*x^2+12*x+74", "y^2=11*x^6+37*x^5+26*x^4+63*x^3+59*x^2+37*x+68", "y^2=41*x^6+11*x^5+58*x^4+67*x^3+58*x^2+11*x+41", "y^2=55*x^6+11*x^5+26*x^4+68*x^3+26*x^2+11*x+55", "y^2=73*x^6+54*x^4+54*x^2+73", "y^2=27*x^6+55*x^5+69*x^4+57*x^3+69*x^2+55*x+27", "y^2=49*x^6+4*x^5+14*x^4+47*x^3+20*x^2+39*x+31", "y^2=x^6+73*x^5+70*x^4+57*x^3+70*x^2+73*x+1", "y^2=x^6+72*x^3+52", "y^2=34*x^6+32*x^5+67*x^4+76*x^3+32*x^2+52*x+37"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.120.1"], "geometric_splitting_field": "2.0.120.1", "geometric_splitting_polynomials": [[30, 0, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 24, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 24, "label": "2.79.abc_nq", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.120.1"], "p": 79, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -28, 354, -2212, 6241], "poly_str": "1 -28 354 -2212 6241 ", "primitive_models": [], "q": 79, "real_poly": [1, -28, 196], "simple_distinct": ["1.79.ao"], "simple_factors": ["1.79.aoA", "1.79.aoB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.120.1", "splitting_polynomials": [[30, 0, 1]], "twist_count": 6, "twists": [["2.79.a_abm", "2.6241.acy_upq", 2], ["2.79.bc_nq", "2.6241.acy_upq", 2], ["2.79.o_en", "2.493039.bse_cwwcg", 3], ["2.79.a_bm", "2.38950081.bgrc_qvcfvq", 4], ["2.79.ao_en", "2.243087455521.cwspw_ekfkyvmeg", 6]]}