# Stored data for abelian variety isogeny class 2.73.g_abl, downloaded from the LMFDB on 28 December 2025. {"abvar_count": 5737, "abvar_counts": [5737, 27818713, 152190493456, 806501015840169, 4297809936712968457, 22901918635025473638400, 122044970762473075551114073, 650377835690639748085704870729, 3465863726533316439689596930395664, 18469587788209870577826792500603094553], "abvar_counts_str": "5737 27818713 152190493456 806501015840169 4297809936712968457 22901918635025473638400 122044970762473075551114073 650377835690639748085704870729 3465863726533316439689596930395664 18469587788209870577826792500603094553 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.280866917886575, 0.947533584553242], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 80, "curve_counts": [80, 5220, 391214, 28399684, 2073160400, 151333371150, 11047394601680, 806460037176964, 58871586792930302, 4297625833443920100], "curve_counts_str": "80 5220 391214 28399684 2073160400 151333371150 11047394601680 806460037176964 58871586792930302 4297625833443920100 ", "curves": [], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 8, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 3, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.4.1"], "geometric_splitting_field": "2.0.4.1", "geometric_splitting_polynomials": [[1, 0, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": -1, "has_principal_polarization": -1, "hyp_count": 0, "is_cyclic": true, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 0, "label": "2.73.g_abl", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 24, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [], "number_fields": ["4.0.144.1"], "p": 73, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 6, -37, 438, 5329], "poly_str": "1 6 -37 438 5329 ", "primitive_models": [], "q": 73, "real_poly": [1, 6, -183], "simple_distinct": ["2.73.g_abl"], "simple_factors": ["2.73.g_ablA"], "simple_multiplicities": [1], "singular_primes": ["2,F-5*V-29", "37,3*F^2+4*F-V-16"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.144.1", "splitting_polynomials": [[1, 0, -1, 0, 1]], "twist_count": 16, "twists": [["2.73.ag_abl", "2.5329.aeg_kal", 2], ["2.73.am_ha", "2.389017.dgm_eiwju", 3], ["2.73.aq_hb", "2.28398241.cdm_acfplgn", 4], ["2.73.q_hb", "2.28398241.cdm_acfplgn", 4], ["2.73.a_eg", "2.151334226289.abwraa_cilozgghy", 6], ["2.73.m_ha", "2.151334226289.abwraa_cilozgghy", 6], ["2.73.abg_pm", "2.22902048046490258711521.bdvyvmmpw_bjwshphvhzhobggeg", 12], ["2.73.aw_ji", "2.22902048046490258711521.bdvyvmmpw_bjwshphvhzhobggeg", 12], ["2.73.ak_by", "2.22902048046490258711521.bdvyvmmpw_bjwshphvhzhobggeg", 12], ["2.73.a_aeg", "2.22902048046490258711521.bdvyvmmpw_bjwshphvhzhobggeg", 12], ["2.73.k_by", "2.22902048046490258711521.bdvyvmmpw_bjwshphvhzhobggeg", 12], ["2.73.w_ji", "2.22902048046490258711521.bdvyvmmpw_bjwshphvhzhobggeg", 12], ["2.73.bg_pm", "2.22902048046490258711521.bdvyvmmpw_bjwshphvhzhobggeg", 12], ["2.73.a_ads", "2.524503804723748275248688345080154231098133441.blmsrgjacpkzvenfw_bbwgkwsandqcnfvucohxgoxufstkodgig", 24], ["2.73.a_ds", "2.524503804723748275248688345080154231098133441.blmsrgjacpkzvenfw_bbwgkwsandqcnfvucohxgoxufstkodgig", 24]], "weak_equivalence_count": 8, "zfv_index": 2368, "zfv_index_factorization": [[2, 6], [37, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 8, "zfv_plus_index_factorization": [[2, 3]], "zfv_plus_norm": 1369, "zfv_singular_count": 4, "zfv_singular_primes": ["2,F-5*V-29", "37,3*F^2+4*F-V-16"]}