# Stored data for abelian variety isogeny class 2.73.au_jm, downloaded from the LMFDB on 12 September 2025. {"abvar_count": 4096, "abvar_counts": [4096, 28901376, 152262283264, 806945377222656, 4297619821944180736, 22901854924751191474176, 122044875399154653468626944, 650377853738050150245335040000, 3465863756444452729156470572978176, 18469587807754264899321250715189968896], "abvar_counts_str": "4096 28901376 152262283264 806945377222656 4297619821944180736 22901854924751191474176 122044875399154653468626944 650377853738050150245335040000 3465863756444452729156470572978176 18469587807754264899321250715189968896 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.301013746419758, 0.301013746419758], "center_dim": 2, "curve_count": 54, "curve_counts": [54, 5422, 391398, 28415326, 2073068694, 151332950158, 11047385969478, 806460059555518, 58871587301004534, 4297625837991639022], "curve_counts_str": "54 5422 391398 28415326 2073068694 151332950158 11047385969478 806460059555518 58871587301004534 4297625837991639022 ", "curves": ["y^2=14*x^6+20*x^5+18*x^4+10*x^3+18*x^2+20*x+14", "y^2=35*x^6+22*x^5+43*x^4+69*x^3+32*x^2+28*x+33", "y^2=5*x^6+42*x^5+60*x^4+30*x^3+6*x^2+21*x+41", "y^2=39*x^6+69*x^5+28*x^4+36*x^3+28*x^2+69*x+39", "y^2=66*x^6+10*x^5+8*x^4+70*x^3+35*x^2+34*x+51", "y^2=18*x^6+68*x^5+65*x^4+16*x^3+17*x^2+4*x+62", "y^2=11*x^6+52*x^5+71*x^4+3*x^3+71*x^2+52*x+11", "y^2=22*x^6+8*x^5+70*x^4+50*x^3+65*x^2+65*x+63", "y^2=4*x^6+7*x^5+66*x^4+72*x^3+66*x^2+7*x+4", "y^2=3*x^6+53*x^5+46*x^4+64*x^3+46*x^2+53*x+3", "y^2=51*x^6+68*x^5+61*x^4+51*x^3+20*x^2+69*x+22", "y^2=3*x^6+49*x^5+28*x^4+67*x^3+28*x^2+49*x+3", "y^2=11*x^6+16*x^5+61*x^4+17*x^3+72*x^2+65*x+33", "y^2=50*x^6+21*x^5+35*x^4+18*x^3+35*x^2+21*x+50", "y^2=25*x^6+61*x^4+61*x^2+25", "y^2=33*x^6+55*x^5+33*x^4+55*x^3+33*x^2+55*x+33", "y^2=34*x^6+16*x^4+16*x^2+34", "y^2=64*x^6+61*x^5+33*x^4+69*x^3+33*x^2+61*x+64", "y^2=69*x^6+5*x^5+34*x^4+47*x^3+34*x^2+5*x+69", "y^2=5*x^6+68", "y^2=5*x^6+5*x^3+5", "y^2=51*x^6+17*x^5+39*x^4+4*x^3+26*x^2+40*x+7", "y^2=60*x^6+31*x^5+63*x^4+5*x^3+4*x^2+61*x+51", "y^2=58*x^6+43*x^5+7*x^4+46*x^3+7*x^2+43*x+58", "y^2=28*x^6+62*x^5+49*x^4+17*x^3+72*x^2+47*x+47", "y^2=17*x^6+37*x^5+31*x^4+60*x^3+59*x^2+48*x+12", "y^2=29*x^6+62*x^5+x^4+51*x^3+6*x^2+70*x+5", "y^2=26*x^6+24*x^4+24*x^2+26", "y^2=4*x^6+37*x^5+8*x^4+14*x^3+25*x^2+18*x+12", "y^2=45*x^6+2*x^4+2*x^2+45", "y^2=25*x^6+50*x^5+57*x^4+x^3+57*x^2+50*x+25", "y^2=41*x^6+24*x^5+43*x^4+39*x^3+14*x^2+50*x+23", "y^2=56*x^6+8*x^5+55*x^4+31*x^3+55*x^2+8*x+56", "y^2=62*x^6+56*x^5+18*x^4+65*x^3+20*x^2+33*x+49", "y^2=31*x^6+42*x^5+18*x^4+29*x^3+52*x^2+28*x+60", "y^2=7*x^6+39*x^5+2*x^4+59*x^3+64*x^2+5*x+10", "y^2=14*x^6+44*x^5+56*x^4+35*x^3+22*x^2+11*x+20", "y^2=12*x^6+25*x^5+31*x^4+2*x^3+30*x^2+50*x+35", "y^2=x^6+68*x^5+13*x^4+15*x^3+42*x^2+62*x+56", "y^2=12*x^6+68*x^5+13*x^4+30*x^3+13*x^2+68*x+12", "y^2=22*x^6+22*x^5+20*x^4+3*x^3+59*x^2+21*x+51", "y^2=5*x^6+5*x^3+68", "y^2=16*x^6+36*x^5+67*x^4+12*x^3+67*x^2+36*x+16", "y^2=17*x^6+30*x^5+65*x^4+35*x^3+65*x^2+30*x+17", "y^2=37*x^6+x^4+x^2+37", "y^2=55*x^5+58*x^4+68*x^3+5*x^2+39*x+5", "y^2=51*x^6+23*x^5+57*x^4+68*x^3+57*x^2+23*x+51", "y^2=70*x^6+53*x^5+37*x^4+23*x^3+10*x^2+16*x+34", "y^2=41*x^6+67*x^5+27*x^4+19*x^3+27*x^2+67*x+41", "y^2=31*x^6+52*x^5+68*x^3+52*x+31", "y^2=52*x^6+22*x^5+68*x^4+7*x^3+68*x^2+22*x+52", "y^2=53*x^6+41*x^5+61*x^4+56*x^3+69*x^2+37*x+29", "y^2=5*x^6+7*x^3+40", "y^2=5*x^6+16*x^5+50*x^4+56*x^3+21*x^2+45*x+60", "y^2=45*x^6+5*x^5+34*x^4+65*x^3+20*x^2+71*x+64", "y^2=66*x^6+70*x^5+46*x^4+34*x^3+46*x^2+70*x+66", "y^2=42*x^6+45*x^5+36*x^4+2*x^3+36*x^2+45*x+42", "y^2=46*x^6+70*x^4+70*x^2+46", "y^2=72*x^6+4*x^5+63*x^4+32*x^3+63*x^2+4*x+72", "y^2=53*x^6+60*x^5+22*x^4+66*x^3+54*x^2+54*x+7", "y^2=47*x^6+28*x^5+21*x^4+28*x^3+21*x^2+28*x+47", "y^2=19*x^6+27*x^5+18*x^4+57*x^3+27*x^2+6*x+55"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.3.1"], "geometric_splitting_field": "2.0.3.1", "geometric_splitting_polynomials": [[1, -1, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 62, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 62, "label": "2.73.au_jm", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.3.1"], "p": 73, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -20, 246, -1460, 5329], "poly_str": "1 -20 246 -1460 5329 ", "primitive_models": [], "q": 73, "real_poly": [1, -20, 100], "simple_distinct": ["1.73.ak"], "simple_factors": ["1.73.akA", "1.73.akB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.3.1", "splitting_polynomials": [[1, -1, 1]], "twist_count": 24, "twists": [["2.73.a_bu", "2.5329.do_sxi", 2], ["2.73.u_jm", "2.5329.do_sxi", 2], ["2.73.ar_ii", "2.389017.dno_euvtu", 3], ["2.73.ao_hn", "2.389017.dno_euvtu", 3], ["2.73.h_ay", "2.389017.dno_euvtu", 3], ["2.73.k_bb", "2.389017.dno_euvtu", 3], ["2.73.bi_qt", "2.389017.dno_euvtu", 3], ["2.73.a_abu", "2.28398241.zhc_kxyxzq", 4], ["2.73.abi_qt", "2.151334226289.acupua_dkjshechy", 6], ["2.73.abb_me", "2.151334226289.acupua_dkjshechy", 6], ["2.73.ay_kf", "2.151334226289.acupua_dkjshechy", 6], ["2.73.ak_bb", "2.151334226289.acupua_dkjshechy", 6], ["2.73.ah_ay", "2.151334226289.acupua_dkjshechy", 6], ["2.73.ad_cy", "2.151334226289.acupua_dkjshechy", 6], ["2.73.a_afn", "2.151334226289.acupua_dkjshechy", 6], ["2.73.a_dt", "2.151334226289.acupua_dkjshechy", 6], ["2.73.d_cy", "2.151334226289.acupua_dkjshechy", 6], ["2.73.o_hn", "2.151334226289.acupua_dkjshechy", 6], ["2.73.r_ii", "2.151334226289.acupua_dkjshechy", 6], ["2.73.y_kf", "2.151334226289.acupua_dkjshechy", 6], ["2.73.bb_me", "2.151334226289.acupua_dkjshechy", 6], ["2.73.a_adt", "2.22902048046490258711521.abaahujfke_bhveshxzzlgrbjqeg", 12], ["2.73.a_fn", "2.22902048046490258711521.abaahujfke_bhveshxzzlgrbjqeg", 12]]}