# Stored data for abelian variety isogeny class 2.71.aq_hy, downloaded from the LMFDB on 09 September 2025. {"abvar_count": 4096, "abvar_counts": [4096, 26214400, 128955682816, 645956789862400, 3255053579256303616, 16409502109233342054400, 82721176091788656672772096, 416997668111649443083085414400, 2102085056072020767190925101305856, 10596610581838399227198465654784000000], "abvar_counts_str": "4096 26214400 128955682816 645956789862400 3255053579256303616 16409502109233342054400 82721176091788656672772096 416997668111649443083085414400 2102085056072020767190925101305856 10596610581838399227198465654784000000 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.342551982147457, 0.342551982147457], "center_dim": 2, "curve_count": 56, "curve_counts": [56, 5198, 360296, 25419678, 1804124056, 128098873838, 9095116353736, 645753600924478, 45848501546009336, 3255243552683174798], "curve_counts_str": "56 5198 360296 25419678 1804124056 128098873838 9095116353736 645753600924478 45848501546009336 3255243552683174798 ", "curves": ["y^2=21*x^6+69*x^5+54*x^4+26*x^3+38*x^2+27*x+51", "y^2=12*x^6+53*x^5+19*x^4+62*x^3+28*x^2+66*x+42", "y^2=29*x^5+7*x^4+66*x^3+5*x^2+23*x+10", "y^2=9*x^6+57*x^5+43*x^4+12*x^3+43*x^2+57*x+9", "y^2=21*x^6+11*x^5+68*x^4+25*x^3+35*x^2+22*x+7", "y^2=56*x^6+66*x^5+52*x^4+59*x^3+31*x^2+63*x+13", "y^2=36*x^6+23*x^5+10*x^4+8*x^3+35*x^2+40*x+46", "y^2=22*x^6+20*x^5+30*x^4+2*x^3+30*x^2+20*x+22", "y^2=28*x^6+29*x^5+39*x^4+43*x^3+39*x^2+29*x+28", "y^2=33*x^6+19*x^5+48*x^4+7*x^3+27*x^2+21*x+63", "y^2=36*x^6+44*x^5+4*x^4+8*x^3+21*x^2+23*x+13", "y^2=9*x^6+24*x^5+2*x^4+8*x^3+2*x^2+24*x+9", "y^2=5*x^6+54*x^4+54*x^2+5", "y^2=23*x^6+31*x^5+60*x^4+58*x^3+60*x^2+31*x+23", "y^2=51*x^6+47*x^5+25*x^4+54*x^3+30*x^2+62*x+62", "y^2=20*x^6+61*x^5+64*x^4+47*x^3+5*x^2+63*x+19", "y^2=20*x^6+20*x^5+59*x^4+51*x^3+29*x^2+16*x+21", "y^2=21*x^6+51*x^5+36*x^4+4*x^3+61*x^2+31*x+61", "y^2=21*x^6+45*x^4+45*x^2+21", "y^2=17*x^6+37*x^5+30*x^4+19*x^3+63*x^2+19*x+16", "y^2=65*x^6+38*x^5+68*x^4+46*x^3+68*x^2+38*x+65", "y^2=69*x^6+2*x^5+49*x^4+53*x^3+31*x^2+28*x+5", "y^2=56*x^6+35*x^5+3*x^4+41*x^3+40*x^2+17*x+39", "y^2=7*x^6+59*x^5+30*x^4+62*x^3+30*x^2+59*x+7", "y^2=6*x^6+26*x^4+26*x^2+6", "y^2=63*x^6+15*x^5+48*x^4+29*x^3+63*x^2+68*x+56", "y^2=35*x^6+51*x^5+27*x^4+57*x^3+37*x^2+35*x+39", "y^2=52*x^6+31*x^5+59*x^4+65*x^3+63*x^2+69*x+68", "y^2=28*x^6+50*x^5+30*x^4+7*x^3+61*x^2+59*x+41", "y^2=5*x^6+2*x^5+63*x^4+38*x^3+63*x^2+2*x+5", "y^2=56*x^6+43*x^5+67*x^4+46*x^3+26*x^2+24*x+28", "y^2=24*x^6+41*x^5+57*x^4+61*x^3+57*x^2+41*x+24", "y^2=65*x^6+60*x^5+52*x^4+65*x^3+46*x^2+39*x+7", "y^2=69*x^6+42*x^5+56*x^4+46*x^3+31*x^2+62*x+62", "y^2=53*x^6+30*x^5+58*x^4+40*x^3+23*x^2+6*x+24", "y^2=63*x^5+29*x^4+12*x^3+20*x^2+45*x+36", "y^2=38*x^6+35*x^5+33*x^4+49*x^3+33*x^2+35*x+38", "y^2=46*x^6+32*x^5+2*x^4+18*x^3+49*x^2+38*x+47", "y^2=19*x^6+31*x^5+31*x^4+24*x^3+41*x^2+13*x+48", "y^2=3*x^6+5*x^5+51*x^4+28*x^3+44*x^2+14*x+43", "y^2=38*x^5+20*x^4+63*x^3+46*x^2+5*x+42", "y^2=31*x^6+40*x^5+51*x^4+29*x^3+51*x^2+40*x+31", "y^2=37*x^6+20*x^5+31*x^4+46*x^3+23*x^2+43*x+6", "y^2=6*x^6+41*x^5+27*x^4+46*x^3+27*x^2+41*x+6", "y^2=41*x^6+45*x^5+29*x^4+28*x^3+29*x^2+45*x+41", "y^2=34*x^6+58*x^5+12*x^4+70*x^3+12*x^2+58*x+34", "y^2=66*x^6+45*x^5+15*x^4+27*x^3+15*x^2+45*x+66", "y^2=32*x^6+18*x^5+48*x^4+39*x^3+19*x^2+30*x+29", "y^2=26*x^6+21*x^5+16*x^4+38*x^3+7*x^2+4*x+2", "y^2=33*x^6+41*x^5+10*x^4+6*x^3+x^2+44*x+4", "y^2=38*x^6+31*x^4+31*x^2+38", "y^2=37*x^6+63*x^5+10*x^4+25*x^3+15*x^2+53*x+45", "y^2=45*x^6+32*x^5+49*x^4+7*x^3+64*x^2+5*x+57", "y^2=56*x^6+63*x^5+55*x^4+61*x^3+55*x^2+63*x+56", "y^2=40*x^6+22*x^5+21*x^4+57*x^3+19*x^2+8*x+46", "y^2=26*x^6+31*x^5+22*x^4+26*x^3+22*x^2+31*x+26", "y^2=6*x^6+49*x^4+49*x^2+6", "y^2=70*x^6+55*x^5+17*x^4+43*x^3+14*x^2+33*x+69", "y^2=50*x^6+42*x^4+42*x^2+50", "y^2=16*x^6+70*x^4+70*x^2+16", "y^2=5*x^6+7*x^5+51*x^4+28*x^3+51*x^2+7*x+5", "y^2=55*x^6+36*x^5+69*x^4+32*x^3+65*x^2+40*x+65", "y^2=58*x^6+50*x^4+50*x^2+58", "y^2=68*x^6+12*x^5+23*x^4+7*x^3+33*x^2+42*x+65", "y^2=26*x^6+20*x^5+6*x^4+19*x^3+54*x^2+58*x+68", "y^2=14*x^6+32*x^5+36*x^4+55*x^3+36*x^2+32*x+14", "y^2=35*x^6+35*x^5+50*x^4+56*x^3+55*x^2+15*x+37", "y^2=35*x^6+18*x^5+32*x^4+32*x^2+18*x+35", "y^2=3*x^6+16*x^5+23*x^4+35*x^3+23*x^2+16*x+3", "y^2=56*x^6+25*x^5+32*x^4+10*x^3+8*x^2+6*x+63", "y^2=65*x^6+38*x^5+69*x^4+46*x^3+69*x^2+38*x+65", "y^2=22*x^6+67*x^5+64*x^4+26*x^3+25*x^2+14*x+31", "y^2=49*x^6+27*x^5+37*x^4+5*x^3+30*x^2+8*x+9", "y^2=46*x^6+61*x^5+70*x^4+43*x^3+11*x^2+68*x+47", "y^2=45*x^6+70*x^5+54*x^4+34*x^3+54*x^2+70*x+45", "y^2=15*x^6+20*x^5+39*x^4+39*x^2+20*x+15", "y^2=42*x^6+49*x^5+36*x^4+29*x^3+15*x^2+9*x+59", "y^2=57*x^6+17*x^5+64*x^4+64*x^3+64*x^2+17*x+57", "y^2=62*x^6+47*x^5+37*x^4+6*x^3+37*x^2+47*x+62", "y^2=70*x^5+35*x^4+15*x^3+62*x^2+31*x", "y^2=12*x^6+64*x^5+30*x^4+69*x^3+30*x^2+64*x+12", "y^2=27*x^6+10*x^5+40*x^4+34*x^3+40*x^2+10*x+27", "y^2=8*x^6+36*x^5+49*x^4+29*x^3+2*x^2+49*x+32", "y^2=69*x^6+34*x^5+50*x^4+47*x^3+56*x^2+60*x+33", "y^2=x^5+49*x^4+16*x^3+24*x^2+54*x", "y^2=5*x^6+37*x^5+15*x^4+48*x^3+25*x^2+16*x+10", "y^2=34*x^6+39*x^5+29*x^4+60*x^3+41*x^2+45*x+61", "y^2=23*x^6+29*x^5+63*x^4+63*x^3+63*x^2+29*x+23"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.55.1"], "geometric_splitting_field": "2.0.55.1", "geometric_splitting_polynomials": [[14, -1, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 88, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 88, "label": "2.71.aq_hy", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.55.1"], "p": 71, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -16, 206, -1136, 5041], "poly_str": "1 -16 206 -1136 5041 ", "primitive_models": [], "q": 71, "real_poly": [1, -16, 64], "simple_distinct": ["1.71.ai"], "simple_factors": ["1.71.aiA", "1.71.aiB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.55.1", "splitting_polynomials": [[14, -1, 1]], "twist_count": 6, "twists": [["2.71.a_da", "2.5041.ga_xxu", 2], ["2.71.q_hy", "2.5041.ga_xxu", 2], ["2.71.i_ah", "2.357911.dns_eroug", 3], ["2.71.a_ada", "2.25411681.lvo_fqfbmc", 4], ["2.71.ai_ah", "2.128100283921.adcfya_dpummdvvy", 6]]}