# Stored data for abelian variety isogeny class 2.71.a_aek, downloaded from the LMFDB on 08 October 2025. {"abvar_count": 4928, "abvar_counts": [4928, 24285184, 128100526400, 645605491277824, 3255243554613393728, 16409744863957096960000, 82721210695574667789624128, 416997677788406169778057641984, 2102085018129621232848142975649600, 10596610599852042874648310489549737984], "abvar_counts_str": "4928 24285184 128100526400 645605491277824 3255243554613393728 16409744863957096960000 82721210695574667789624128 416997677788406169778057641984 2102085018129621232848142975649600 10596610599852042874648310489549737984 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.101666819830837, 0.898333180169164], "center_dim": 4, "cohen_macaulay_max": 3, "curve_count": 72, "curve_counts": [72, 4814, 357912, 25405854, 1804229352, 128100768878, 9095120158392, 645753615909694, 45848500718449032, 3255243558216906254], "curve_counts_str": "72 4814 357912 25405854 1804229352 128100768878 9095120158392 645753615909694 45848500718449032 3255243558216906254 ", "curves": ["y^2=51*x^6+66*x^5+66*x^4+30*x^3+21*x^2+68*x+22", "y^2=2*x^6+36*x^5+36*x^4+68*x^3+5*x^2+50*x+12", "y^2=36*x^5+8*x^4+7*x^3+55*x^2+16*x+6", "y^2=17*x^6+18*x^5+10*x^4+48*x^3+29*x^2+47*x", "y^2=12*x^6+5*x^5+62*x^4+12*x^3+24*x^2+4*x+17", "y^2=58*x^6+8*x^5+22*x^4+12*x^3+6*x^2+39*x+11", "y^2=51*x^6+56*x^5+12*x^4+13*x^3+42*x^2+60*x+6", "y^2=29*x^6+29*x^5+48*x^4+42*x^3+67*x^2+53*x+51", "y^2=16*x^6+45*x^5+38*x^4+13*x^3+25*x^2+69*x+23", "y^2=34*x^6+56*x^5+7*x^4+66*x^3+8*x^2+63*x+64", "y^2=47*x^6+31*x^5+42*x^4+44*x^3+32*x^2+35*x+28", "y^2=5*x^6+45*x^5+26*x^4+47*x^3+61*x^2+26*x+68", "y^2=35*x^6+31*x^5+40*x^4+45*x^3+x^2+40*x+50", "y^2=50*x^6+58*x^5+36*x^4+12*x^3+14*x^2+32*x+11", "y^2=16*x^6+56*x^5+43*x^4+54*x^3+22*x^2+65*x+68", "y^2=58*x^6+39*x^5+49*x^4+60*x^3+21*x^2+26*x+47", "y^2=3*x^6+26*x^5+22*x^4+7*x^3+46*x^2+48*x+48", "y^2=18*x^6+50*x^5+68*x^4+x^3+25*x^2+31*x+52", "y^2=27*x^6+10*x^5+25*x^4+51*x^3+33*x^2+64*x+31", "y^2=43*x^6+57*x^5+9*x^4+52*x^3+28*x^2+10*x+7", "y^2=7*x^6+18*x^5+9*x^4+38*x^3+17*x^2+20*x+15", "y^2=26*x^6+69*x^4+57*x^2+43", "y^2=47*x^6+44*x^4+24*x^2+4", "y^2=3*x^6+22*x^4+12*x^2+35", "y^2=70*x^6+20*x^4+69*x^2+12", "y^2=67*x^6+28*x^5+17*x^4+8*x^3+29*x^2+52*x+10", "y^2=26*x^6+15*x^5+25*x^4+24*x^3+55*x^2+30*x+15", "y^2=48*x^6+39*x^5+13*x^4+40*x^3+70*x^2+x+34", "y^2=56*x^6+49*x^5+9*x^4+2*x^3+37*x^2+41*x+48", "y^2=33*x^6+50*x^5+36*x^4+8*x^3+46*x^2+48*x+65", "y^2=18*x^6+66*x^5+39*x^4+56*x^3+38*x^2+52*x+29", "y^2=60*x^6+12*x^5+48*x^4+44*x^3+55*x^2+66*x+70", "y^2=65*x^6+13*x^5+52*x^4+24*x^3+30*x^2+36*x+64", "y^2=48*x^6+69*x^5+42*x^4+41*x^3+57*x^2+55*x+14", "y^2=66*x^6+27*x^5+13*x^4+24*x^3+x^2+x+19", "y^2=61*x^6+65*x^5+30*x^4+47*x^3+37*x^2+21*x+23", "y^2=62*x^6+45*x^5+51*x^4+57*x^3+5*x^2+25*x+19", "y^2=8*x^6+66*x^5+62*x^4+14*x^3+14*x^2+38*x+20", "y^2=35*x^6+16*x^5+33*x^4+70*x^3+37*x^2+36*x+27", "y^2=48*x^6+23*x^5+31*x^4+x^3+66*x^2+5*x+30", "y^2=x^6+25*x^5+43*x^4+52*x^3+2*x^2+63*x+31", "y^2=7*x^6+33*x^5+17*x^4+9*x^3+14*x^2+15*x+4", "y^2=26*x^6+17*x^5+37*x^4+17*x^3+65*x^2+66*x+27", "y^2=10*x^6+32*x^5+51*x^4+36*x^3+40*x^2+20", "y^2=62*x^5+52*x^4+17*x^3+25*x^2+15*x+10", "y^2=8*x^5+9*x^4+48*x^3+33*x^2+34*x+70", "y^2=32*x^6+64*x^5+59*x^4+68*x^3+8*x^2+60*x+51", "y^2=36*x^6+23*x^5+18*x^4+47*x^3+50*x^2+24*x+32", "y^2=39*x^6+19*x^5+55*x^4+45*x^3+66*x^2+26*x+11"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 93, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.7.1"], "geometric_splitting_field": "2.0.7.1", "geometric_splitting_polynomials": [[2, -1, 1]], "group_structure_count": 9, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 49, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 49, "label": "2.71.a_aek", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.7.1", "2.0.7.1"], "p": 71, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 0, -114, 0, 5041], "poly_str": "1 0 -114 0 5041 ", "primitive_models": [], "q": 71, "real_poly": [1, 0, -256], "simple_distinct": ["1.71.aq", "1.71.q"], "simple_factors": ["1.71.aqA", "1.71.qA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,F-5"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.7.1", "splitting_polynomials": [[2, -1, 1]], "twist_count": 6, "twists": [["2.71.abg_pi", "2.5041.aiu_bidq", 2], ["2.71.bg_pi", "2.5041.aiu_bidq", 2], ["2.71.a_ek", "2.25411681.aiqe_ezutsw", 4], ["2.71.aq_hd", "2.128100283921.bbpke_bnfrtrlqc", 6], ["2.71.q_hd", "2.128100283921.bbpke_bnfrtrlqc", 6]], "weak_equivalence_count": 199, "zfv_index": 4096, "zfv_index_factorization": [[2, 12]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 784, "zfv_singular_count": 2, "zfv_singular_primes": ["2,F-5"]}