# Stored data for abelian variety isogeny class 2.67.e_n, downloaded from the LMFDB on 10 December 2025. {"abvar_count": 4775, "abvar_counts": [4775, 20203025, 90672742400, 406347987505625, 1822722350839644375, 8182712172642802073600, 36732191746647726340645775, 164890952062652209908803155625, 740195528587438936853190119014400, 3322737661448345999914679073722600625], "abvar_counts_str": "4775 20203025 90672742400 406347987505625 1822722350839644375 8182712172642802073600 36732191746647726340645775 164890952062652209908803155625 740195528587438936853190119014400 3322737661448345999914679073722600625 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.310501921585798, 0.797897749032316], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 72, "curve_counts": [72, 4500, 301476, 20165028, 1350039592, 90458307750, 6060706091736, 406067661072708, 27206534937733212, 1822837804412012500], "curve_counts_str": "72 4500 301476 20165028 1350039592 90458307750 6060706091736 406067661072708 27206534937733212 1822837804412012500 ", "curves": ["y^2=14*x^6+7*x^5+40*x^4+38*x^3+30*x^2+27*x+24", "y^2=62*x^6+23*x^5+47*x^4+46*x^3+56*x^2+21*x+37", "y^2=61*x^6+24*x^5+15*x^4+63*x^3+66*x^2+32*x+3", "y^2=11*x^6+56*x^5+14*x^4+52*x^3+39*x^2+34*x+26", "y^2=22*x^6+18*x^5+55*x^4+52*x^3+18*x^2+5*x+44", "y^2=54*x^6+43*x^5+61*x^4+49*x^3+17*x^2+47*x+53", "y^2=54*x^6+19*x^5+26*x^4+66*x^3+43*x^2+49*x+16", "y^2=x^6+59*x^5+30*x^4+14*x^3+39*x^2+61*x+22", "y^2=15*x^6+19*x^5+30*x^4+5*x^3+45*x^2+21*x+37", "y^2=39*x^6+53*x^5+8*x^3+59*x^2+28*x+28", "y^2=64*x^6+48*x^5+52*x^4+45*x^3+49*x^2+3*x+33", "y^2=9*x^6+43*x^5+42*x^4+16*x^3+51*x^2+42*x+12", "y^2=11*x^6+11*x^5+60*x^4+12*x^3+32*x^2+16*x+46", "y^2=18*x^6+18*x^5+17*x^4+45*x^3+37*x^2+45*x+17", "y^2=46*x^6+35*x^5+25*x^4+58*x^3+22*x^2+2", "y^2=39*x^6+24*x^5+47*x^4+20*x^3+38*x^2+65*x+28", "y^2=58*x^6+x^5+26*x^4+32*x^3+53*x^2+39*x+28", "y^2=10*x^6+17*x^5+28*x^4+8*x^3+63*x^2+36*x+21", "y^2=27*x^6+4*x^5+39*x^4+38*x^3+46*x^2+66*x+7", "y^2=17*x^6+13*x^5+22*x^4+28*x^3+45*x^2+5*x+31", "y^2=x^6+62*x^5+49*x^4+8*x^3+15*x^2+47*x+11", "y^2=65*x^6+11*x^5+4*x^4+63*x^3+64*x^2+56*x+28", "y^2=18*x^6+41*x^5+42*x^4+18*x^3+30*x^2+25*x+62", "y^2=29*x^6+32*x^5+50*x^4+41*x^3+63*x^2+25*x+4", "y^2=59*x^6+48*x^5+46*x^4+19*x^3+19*x^2+56*x+63", "y^2=4*x^6+6*x^5+59*x^3+9*x^2+66*x+31", "y^2=46*x^6+8*x^5+23*x^4+18*x^3+19*x^2+33*x+21", "y^2=22*x^6+20*x^5+38*x^4+46*x^3+3*x^2+17*x+25", "y^2=61*x^6+59*x^5+7*x^4+16*x^3+39*x^2+51*x+56", "y^2=65*x^6+63*x^5+22*x^4+32*x^3+45*x^2+28*x+39", "y^2=65*x^6+14*x^5+62*x^4+45*x^3+40*x^2+14*x+31", "y^2=2*x^6+24*x^5+57*x^4+36*x^3+49*x^2+57*x+45", "y^2=41*x^6+47*x^5+39*x^4+58*x^3+11*x^2+39*x+28", "y^2=30*x^6+63*x^5+54*x^4+62*x^3+41*x^2+34*x+57", "y^2=7*x^6+28*x^5+50*x^4+8*x^3+8*x^2+26*x+54", "y^2=24*x^6+10*x^5+28*x^4+24*x^3+9*x^2+44*x+30", "y^2=4*x^6+65*x^5+43*x^4+41*x^3+50*x^2+11*x+3", "y^2=63*x^6+33*x^5+58*x^4+47*x^3+57*x^2+15*x+12", "y^2=24*x^6+54*x^5+17*x^4+39*x^3+4*x^2+9*x+16", "y^2=56*x^6+30*x^5+10*x^4+58*x^3+34*x+4", "y^2=27*x^6+30*x^5+29*x^4+57*x^3+61*x^2+56*x+38", "y^2=25*x^6+8*x^5+21*x^4+57*x^3+53*x^2+35*x+26", "y^2=59*x^6+10*x^5+24*x^4+4*x^3+2*x^2+58*x+47", "y^2=21*x^6+62*x^5+54*x^4+50*x^3+47*x^2+3*x+53", "y^2=3*x^6+61*x^5+38*x^4+65*x^3+51*x^2+45*x+65", "y^2=21*x^6+20*x^5+3*x^4+57*x^3+53*x^2+66*x+6", "y^2=45*x^6+8*x^5+52*x^4+29*x^3+16*x^2+10*x+46", "y^2=5*x^6+12*x^5+28*x^4+23*x^3+58*x^2+28*x+6", "y^2=15*x^6+47*x^5+15*x^4+24*x^3+x^2+9*x+18", "y^2=27*x^6+33*x^5+46*x^4+31*x^3+41*x^2+4*x+57", "y^2=4*x^6+29*x^5+14*x^4+37*x^3+17*x^2+62*x+31", "y^2=43*x^6+38*x^5+2*x^4+3*x^3+24*x+22", "y^2=55*x^6+10*x^5+14*x^4+62*x^3+65*x^2+49*x+37", "y^2=7*x^6+x^5+16*x^4+47*x^3+6*x^2+49*x+51", "y^2=8*x^6+56*x^5+9*x^4+9*x^3+51*x^2+40*x+11", "y^2=x^6+4*x^5+35*x^4+2*x^3+66*x^2+11*x+65", "y^2=8*x^6+50*x^5+18*x^4+15*x^3+x^2+46*x+55", "y^2=18*x^6+30*x^5+16*x^4+5*x^3+34*x^2+62*x+48", "y^2=27*x^6+43*x^5+32*x^4+14*x^3+51*x^2+40*x+43", "y^2=21*x^6+65*x^5+2*x^4+33*x^3+57*x^2+58*x+29", "y^2=47*x^6+39*x^5+45*x^4+31*x^3+28*x^2+55*x+14", "y^2=x^6+31*x^5+53*x^4+60*x^3+50*x^2+19*x+64", "y^2=38*x^6+26*x^5+28*x^4+61*x^3+59*x^2+17*x+2", "y^2=14*x^6+5*x^5+11*x^4+29*x^3+65*x^2+59*x+21", "y^2=35*x^6+8*x^5+55*x^4+30*x^3+26*x^2+14*x+35", "y^2=64*x^6+3*x^5+51*x^4+60*x^3+32*x^2+31*x+35", "y^2=48*x^6+31*x^5+13*x^4+35*x^3+22*x^2+26*x+35", "y^2=43*x^6+55*x^5+45*x^4+24*x^3+37*x^2+35*x+25", "y^2=19*x^6+2*x^5+55*x^4+46*x^3+49*x^2+x+26", "y^2=24*x^6+52*x^5+30*x^4+29*x^3+14*x^2+25*x+6", "y^2=30*x^6+9*x^5+57*x^4+41*x^3+29*x^2+25*x+48", "y^2=10*x^6+41*x^5+22*x^4+26*x^3+55*x^2+27*x+62", "y^2=31*x^6+66*x^4+10*x^3+60*x^2+18*x+23", "y^2=35*x^6+42*x^5+24*x^4+3*x^3+64*x^2+38*x+14", "y^2=14*x^6+24*x^5+3*x^4+23*x^3+42*x^2+3*x+32", "y^2=23*x^6+18*x^5+13*x^4+19*x^3+52*x^2+34*x+14", "y^2=44*x^6+34*x^5+50*x^4+38*x^3+9*x^2+35*x+55", "y^2=43*x^6+65*x^5+11*x^4+30*x^3+5*x^2+26*x+26", "y^2=28*x^6+25*x^5+35*x^4+24*x^3+9*x^2+31*x+52", "y^2=50*x^6+43*x^5+58*x^4+24*x^3+11*x^2+6*x+40", "y^2=44*x^6+9*x^5+6*x^4+40*x^3+43*x^2+53*x+23", "y^2=24*x^6+63*x^5+12*x^4+23*x^3+55*x^2+23*x+59", "y^2=25*x^6+47*x^5+53*x^4+56*x^3+27*x^2+31*x+51", "y^2=45*x^6+30*x^5+29*x^4+65*x^3+61*x^2+2*x+17", "y^2=21*x^6+63*x^5+22*x^4+50*x^3+26*x^2+34*x+34", "y^2=46*x^6+40*x^5+43*x^4+36*x^3+60*x^2+39*x+63", "y^2=25*x^6+26*x^5+46*x^4+54*x^3+32*x^2+47*x+30", "y^2=39*x^6+20*x^5+5*x^4+48*x^3+15*x^2+15*x+28", "y^2=18*x^6+60*x^5+65*x^4+61*x^3+49*x^2+28*x+23", "y^2=41*x^6+30*x^4+30*x^3+23*x^2+34*x+61", "y^2=25*x^6+50*x^5+26*x^4+26*x^3+26*x^2+42*x+43", "y^2=10*x^6+16*x^5+31*x^4+9*x^3+42*x^2+54*x+48", "y^2=35*x^6+10*x^5+37*x^4+21*x^3+63*x^2+62*x+6", "y^2=27*x^6+41*x^5+30*x^4+62*x^3+49*x^2+19*x+25", "y^2=12*x^6+20*x^5+43*x^4+30*x^3+54*x^2+4*x+55", "y^2=33*x^6+39*x^5+53*x^4+37*x^3+39*x^2+24*x+38", "y^2=28*x^6+61*x^5+18*x^4+41*x^3+27*x^2+3*x+17", "y^2=48*x^6+42*x^5+34*x^4+20*x^3+51*x^2+31*x+48", "y^2=4*x^6+23*x^5+9*x^4+41*x^3+12*x^2+13*x+26", "y^2=38*x^6+2*x^5+26*x^4+36*x^3+37*x^2+12*x+65", "y^2=57*x^6+16*x^5+14*x^4+36*x^3+2*x^2+26*x+38", "y^2=6*x^6+16*x^5+56*x^4+32*x^3+8*x^2+66*x+40", "y^2=35*x^6+53*x^5+23*x^4+64*x^3+19*x^2+16*x+64", "y^2=25*x^6+42*x^5+40*x^4+59*x^3+16*x^2+35*x+39", "y^2=52*x^6+42*x^5+52*x^4+16*x^3+2*x^2+63*x+23", "y^2=61*x^6+46*x^5+51*x^4+29*x^3+6*x^2+58*x+30", "y^2=28*x^6+44*x^5+56*x^4+30*x^3+6*x^2+57*x+31", "y^2=47*x^6+41*x^5+51*x^4+23*x^2+43*x+47", "y^2=17*x^6+11*x^5+3*x^4+33*x^3+28*x^2+35*x+6", "y^2=15*x^6+18*x^5+49*x^4+2*x^3+48*x^2+33*x+9", "y^2=62*x^6+53*x^5+9*x^4+57*x^3+14*x^2+5*x+8", "y^2=27*x^6+35*x^5+45*x^4+53*x^3+66*x^2+53*x+23", "y^2=37*x^6+49*x^5+29*x^4+58*x^3+x^2+56*x+17", "y^2=21*x^6+64*x^5+16*x^4+34*x^3+22*x^2+10*x+17", "y^2=19*x^6+47*x^5+39*x^4+48*x^2+40*x+49", "y^2=56*x^6+27*x^5+3*x^4+14*x^3+63*x^2+34*x+9", "y^2=59*x^6+45*x^5+65*x^4+31*x^3+64*x^2+53*x+30", "y^2=24*x^6+24*x^5+51*x^4+34*x^3+17*x^2+51*x+54", "y^2=21*x^6+33*x^5+45*x^4+50*x^3+19*x^2+48*x+56", "y^2=19*x^6+4*x^5+11*x^4+49*x^3+54*x^2+10*x+59", "y^2=19*x^6+11*x^5+45*x^4+31*x^3+21*x^2+22*x+57", "y^2=27*x^6+22*x^5+50*x^4+20*x^3+53*x^2+63*x+54", "y^2=37*x^6+21*x^5+41*x^4+32*x^3+65*x^2+36*x+21", "y^2=26*x^6+42*x^5+45*x^4+24*x^3+44*x^2+65*x+40", "y^2=64*x^6+44*x^5+2*x^4+38*x^3+10*x^2+17*x+66", "y^2=51*x^6+25*x^5+13*x^4+50*x^3+30*x^2+41*x+7", "y^2=65*x^6+52*x^5+29*x^3+23*x^2+52*x+17", "y^2=x^6+55*x^5+24*x^4+64*x^3+64*x^2+37*x+3", "y^2=44*x^6+23*x^5+65*x^4+34*x^3+18*x^2+20*x+46", "y^2=56*x^6+24*x^5+21*x^4+16*x^3+18*x^2+5*x+42", "y^2=52*x^6+58*x^5+28*x^4+20*x^3+25*x+47", "y^2=61*x^6+62*x^5+26*x^4+64*x^3+3*x^2+49*x+6", "y^2=61*x^6+37*x^4+48*x^3+37*x^2+63*x+19", "y^2=16*x^6+38*x^5+40*x^4+66*x^3+51*x^2+35*x+65", "y^2=3*x^6+34*x^5+33*x^4+31*x^3+26*x^2+12*x+65", "y^2=65*x^6+3*x^5+50*x^4+37*x^3+47*x^2+6*x+29", "y^2=6*x^6+54*x^5+33*x^4+29*x^3+37*x^2+6*x+47", "y^2=59*x^6+65*x^5+22*x^4+66*x^3+26*x^2+24*x+64", "y^2=35*x^6+26*x^5+4*x^4+37*x^3+2*x^2+28*x+57", "y^2=49*x^6+11*x^5+18*x^4+6*x^3+65*x^2+9*x+54", "y^2=9*x^6+45*x^5+65*x^4+42*x^3+33*x^2+63*x+47", "y^2=14*x^6+7*x^5+41*x^4+4*x^3+38*x^2+41*x+42", "y^2=12*x^6+2*x^5+7*x^4+34*x^3+38*x^2+18*x+49", "y^2=10*x^6+6*x^5+39*x^4+56*x^3+3*x^2+59*x+23", "y^2=39*x^6+60*x^5+42*x^4+34*x^3+48*x^2+54*x+40", "y^2=3*x^6+36*x^5+43*x^4+36*x^3+21*x^2+3*x+57", "y^2=19*x^6+45*x^5+41*x^4+23*x^3+26*x^2+12*x+40", "y^2=48*x^6+51*x^5+16*x^4+20*x^3+53*x^2+50*x+9", "y^2=17*x^6+49*x^5+43*x^4+17*x^3+15*x^2+50*x+55", "y^2=10*x^6+16*x^5+8*x^4+18*x^3+62*x^2+41*x+39", "y^2=16*x^6+41*x^5+12*x^4+48*x^3+21*x^2+37*x+44", "y^2=3*x^6+12*x^5+27*x^4+21*x^3+20*x^2+44*x+52", "y^2=15*x^6+53*x^5+27*x^4+66*x^3+25*x^2+14*x+46", "y^2=14*x^6+49*x^5+34*x^4+65*x^2+48*x+14", "y^2=49*x^6+58*x^5+37*x^4+29*x^3+34*x^2+26*x+21", "y^2=26*x^6+9*x^5+42*x^4+43*x^3+42*x^2+21*x+39", "y^2=27*x^6+63*x^5+40*x^4+7*x^3+31*x^2+54*x+10", "y^2=36*x^6+53*x^5+40*x^4+8*x^3+66*x^2+43*x+33", "y^2=63*x^6+53*x^5+31*x^4+24*x^3+64*x^2+12*x+55", "y^2=3*x^6+56*x^5+61*x^4+13*x^3+30*x^2+14*x+53", "y^2=28*x^6+32*x^5+64*x^4+66*x^3+13*x^2+48*x+1", "y^2=15*x^6+42*x^5+23*x^4+2*x^3+35*x^2+9*x+48", "y^2=2*x^6+15*x^5+15*x^4+30*x^3+19*x^2+41*x+56", "y^2=5*x^6+8*x^5+34*x^4+65*x^3+33*x^2+66*x+36", "y^2=48*x^6+14*x^5+3*x^4+28*x^3+22*x^2+24*x+22", "y^2=52*x^6+52*x^5+10*x^4+18*x^3+48*x^2+14*x+55", "y^2=37*x^6+35*x^5+41*x^4+35*x^3+39*x^2+7*x+62", "y^2=8*x^6+32*x^5+32*x^4+29*x^3+64*x^2+35*x+33", "y^2=36*x^6+11*x^5+60*x^4+10*x^3+9*x^2+7*x+66", "y^2=38*x^6+x^5+33*x^4+8*x^3+24*x^2+40*x+5", "y^2=21*x^6+34*x^5+37*x^4+62*x^3+52*x^2+33*x+58", "y^2=36*x^6+7*x^5+61*x^4+62*x^3+22*x^2+63*x+21", "y^2=4*x^6+51*x^5+20*x^4+54*x^3+23*x^2+4*x+54", "y^2=29*x^6+23*x^5+64*x^4+25*x^2+45*x+25", "y^2=34*x^6+18*x^5+30*x^4+66*x^3+49*x^2+56*x+57", "y^2=24*x^6+62*x^5+36*x^4+65*x^3+2*x^2+13*x+56", "y^2=40*x^6+37*x^5+48*x^4+29*x^3+64*x^2+9*x+11", "y^2=65*x^6+20*x^5+27*x^4+46*x^2+42*x+29", "y^2=19*x^6+21*x^5+10*x^4+58*x^3+2*x^2+59*x+27", "y^2=38*x^6+64*x^5+65*x^4+31*x^3+37*x^2+30*x+57", "y^2=45*x^6+32*x^5+9*x^4+4*x^3+51*x^2+44*x+37", "y^2=26*x^6+18*x^5+66*x^4+11*x^3+34*x^2+63*x+54", "y^2=62*x^6+52*x^5+51*x^4+15*x^2+54*x+35", "y^2=26*x^6+x^5+60*x^4+44*x^3+59*x^2+54*x+12", "y^2=15*x^6+13*x^5+40*x^4+41*x^3+23*x^2+29*x+42", "y^2=24*x^6+35*x^5+18*x^4+65*x^3+25*x^2+9*x+24", "y^2=27*x^6+47*x^5+18*x^4+15*x^3+45*x^2+52*x+47", "y^2=60*x^6+52*x^5+60*x^4+41*x^3+22*x^2+48*x+33", "y^2=16*x^6+63*x^5+44*x^4+59*x^3+15*x^2+23*x+41", "y^2=6*x^6+38*x^5+3*x^4+52*x^3+30*x^2+37*x+58", "y^2=34*x^6+53*x^5+11*x^4+22*x^3+12*x^2+45*x+56", "y^2=25*x^6+24*x^5+54*x^4+39*x^3+36*x^2+62*x+17", "y^2=34*x^6+40*x^4+46*x^3+63*x^2+25*x+57", "y^2=26*x^6+38*x^5+20*x^4+60*x^3+40*x^2+38*x+54", "y^2=11*x^6+29*x^5+66*x^4+29*x^3+47*x^2+19*x+57", "y^2=17*x^6+51*x^5+3*x^4+61*x^3+5*x^2+x+32", "y^2=30*x^6+16*x^5+21*x^4+41*x^3+17*x^2+25*x+60", "y^2=50*x^6+64*x^5+36*x^4+4*x^3+23*x^2+55*x+58", "y^2=31*x^6+51*x^5+11*x^4+35*x^3+33*x^2+21*x+1", "y^2=17*x^6+17*x^5+19*x^4+28*x^3+37*x^2+24*x+42", "y^2=19*x^6+20*x^5+56*x^4+25*x^3+38*x^2+44*x+8", "y^2=3*x^6+7*x^5+16*x^4+6*x^3+14*x^2+51*x+17", "y^2=60*x^6+63*x^5+46*x^4+24*x^3+5*x^2+54*x+54", "y^2=31*x^6+x^5+35*x^4+31*x^3+47*x^2+8*x+60", "y^2=10*x^6+56*x^5+22*x^3+10*x^2+35*x+66", "y^2=12*x^6+32*x^5+56*x^4+21*x^3+30*x^2+64*x+61", "y^2=66*x^6+23*x^5+6*x^4+39*x^3+19*x^2+39*x+56", "y^2=14*x^6+18*x^5+62*x^4+52*x^3+60*x^2+41*x+43", "y^2=14*x^6+3*x^5+38*x^4+11*x^3+33*x^2+58*x+37", "y^2=4*x^6+56*x^5+63*x^4+58*x^3+61*x^2+15*x+27", "y^2=31*x^6+50*x^5+8*x^4+37*x^3+31*x^2+x+56", "y^2=30*x^6+7*x^5+31*x^4+23*x^3+13*x^2+7*x+65", "y^2=28*x^6+7*x^5+34*x^4+15*x^3+17*x^2+13*x+37", "y^2=46*x^6+16*x^5+11*x^4+60*x^3+14*x^2+18*x+32", "y^2=60*x^6+65*x^5+30*x^4+57*x^3+36*x^2+3*x+32", "y^2=44*x^6+6*x^5+22*x^4+6*x^3+x^2+31*x+37", "y^2=43*x^6+35*x^5+15*x^4+30*x^3+44*x^2+25*x+15", "y^2=43*x^6+35*x^5+29*x^4+12*x^3+41*x^2+60*x+19", "y^2=25*x^6+43*x^5+3*x^4+54*x^3+7*x^2+25*x+13", "y^2=32*x^6+32*x^5+37*x^4+47*x^3+47*x^2+21*x+13", "y^2=28*x^6+18*x^5+9*x^4+44*x^3+20*x^2+8*x+49", "y^2=44*x^6+2*x^5+32*x^4+61*x^3+66*x^2+49*x+32", "y^2=30*x^6+45*x^5+17*x^4+51*x^3+19*x^2+10*x+28", "y^2=24*x^6+53*x^5+35*x^4+19*x^3+28*x^2+39*x+16", "y^2=44*x^6+55*x^5+14*x^4+43*x^3+36*x^2+19*x+38", "y^2=62*x^6+20*x^5+20*x^4+48*x^3+6*x^2+33*x+36", "y^2=27*x^6+26*x^5+2*x^4+44*x^3+30*x^2+18*x+27", "y^2=3*x^6+41*x^5+31*x^4+5*x^3+34*x^2+7*x+42", "y^2=21*x^6+29*x^5+46*x^4+24*x^3+6*x^2+50*x+4", "y^2=46*x^6+14*x^5+66*x^4+44*x^3+12*x^2+53*x+59", "y^2=11*x^6+11*x^5+7*x^4+63*x^3+8*x^2+9", "y^2=53*x^6+55*x^5+54*x^4+x^3+9*x^2+12*x+31", "y^2=32*x^6+32*x^5+39*x^4+46*x^3+63*x^2+12*x+60", "y^2=4*x^6+10*x^5+19*x^4+35*x^3+10*x^2+28*x+27", "y^2=26*x^6+34*x^5+19*x^4+36*x^3+66*x^2+34*x+10", "y^2=29*x^6+40*x^5+29*x^4+35*x^3+6*x^2+14*x+10", "y^2=25*x^6+14*x^5+17*x^4+32*x^2+20*x+13", "y^2=7*x^6+9*x^5+10*x^4+52*x^3+18*x^2+12*x+21", "y^2=15*x^6+9*x^5+x^4+55*x^3+50*x^2+54*x+54", "y^2=23*x^6+65*x^5+55*x^4+11*x^3+29*x^2+44*x+28", "y^2=16*x^6+36*x^5+30*x^4+5*x^3+43*x^2+3*x+62", "y^2=65*x^6+45*x^5+66*x^4+20*x^2+52*x+59", "y^2=57*x^6+55*x^5+56*x^4+59*x^3+45*x^2+43*x+45", "y^2=34*x^6+48*x^5+55*x^4+22*x^3+41*x^2+50*x+1", "y^2=8*x^6+58*x^5+14*x^4+18*x^3+45*x^2+58*x+4", "y^2=53*x^6+28*x^5+11*x^4+34*x^3+31*x^2+2*x+5", "y^2=7*x^6+7*x^5+30*x^4+10*x^3+22*x^2+55*x+52", "y^2=36*x^6+21*x^5+22*x^4+14*x^3+24*x^2+60*x+59", "y^2=15*x^6+59*x^5+8*x^4+44*x^3+23*x^2+32*x+45", "y^2=4*x^6+23*x^5+6*x^4+x^3+49*x^2+46*x+1", "y^2=13*x^6+25*x^5+54*x^4+63*x^3+34*x^2+15*x+33", "y^2=54*x^6+7*x^5+42*x^4+51*x^3+45*x^2+7*x+21", "y^2=42*x^6+36*x^5+13*x^4+50*x^3+28*x^2+31*x+11", "y^2=22*x^6+11*x^5+38*x^4+38*x^3+35*x^2+56*x+2", "y^2=48*x^6+45*x^5+45*x^4+37*x^3+22*x^2+28*x+19", "y^2=17*x^6+42*x^5+27*x^4+4*x^3+64*x^2+17*x+37", "y^2=13*x^6+34*x^5+23*x^4+23*x^3+39*x^2+6*x+60", "y^2=48*x^6+58*x^5+34*x^4+60*x^3+62*x^2+38*x+53", "y^2=16*x^6+55*x^5+18*x^4+9*x^3+4*x^2+33*x+38", "y^2=43*x^6+31*x^5+53*x^4+29*x^3+13*x^2+22*x+9", "y^2=41*x^6+38*x^5+57*x^4+11*x^3+5*x^2+37*x+40", "y^2=59*x^6+30*x^5+43*x^4+28*x^3+51*x^2+35*x+20", "y^2=30*x^6+6*x^5+35*x^4+42*x^3+5*x^2+29*x+64", "y^2=42*x^6+65*x^5+25*x^4+17*x^3+14*x+39", "y^2=64*x^6+54*x^5+64*x^4+49*x^3+62*x^2+58*x+2", "y^2=64*x^6+10*x^5+36*x^4+17*x^3+27*x^2+64", "y^2=14*x^6+x^5+21*x^4+65*x^3+51*x^2+2*x+60", "y^2=23*x^6+18*x^5+51*x^4+23*x^3+40*x^2+11*x+40", "y^2=17*x^6+7*x^5+28*x^4+10*x^3+17*x^2+30*x+17", "y^2=44*x^6+43*x^5+46*x^4+28*x^3+25*x^2+61*x+58", "y^2=40*x^6+41*x^5+11*x^4+43*x^3+48*x^2+25*x+55", "y^2=54*x^6+30*x^5+10*x^4+39*x^3+46*x^2+26*x+60", "y^2=66*x^6+36*x^5+23*x^4+63*x^3+32*x^2+44*x+27", "y^2=55*x^6+48*x^5+2*x^4+2*x^3+35*x^2+48*x+66", "y^2=21*x^6+50*x^5+34*x^4+33*x^3+59*x^2+22*x+22", "y^2=43*x^6+5*x^5+10*x^4+9*x^3+50*x^2+2*x+9"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 8, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.433025.1"], "geometric_splitting_field": "4.0.433025.1", "geometric_splitting_polynomials": [[1100, -70, 71, -2, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 276, "is_cyclic": false, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 276, "label": "2.67.e_n", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [5], "number_fields": ["4.0.433025.1"], "p": 67, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 4, 13, 268, 4489], "poly_str": "1 4 13 268 4489 ", "primitive_models": [], "q": 67, "real_poly": [1, 4, -121], "simple_distinct": ["2.67.e_n"], "simple_factors": ["2.67.e_nA"], "simple_multiplicities": [1], "singular_primes": ["2,F^2-3*F-2*V-7", "5,F^2-7*F-V-7", "5,2*F^2-2*F+6"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.433025.1", "splitting_polynomials": [[1100, -70, 71, -2, 1]], "twist_count": 2, "twists": [["2.67.ae_n", "2.4489.k_kjj", 2]], "weak_equivalence_count": 8, "zfv_index": 100, "zfv_index_factorization": [[2, 2], [5, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 10, "zfv_plus_index_factorization": [[2, 1], [5, 1]], "zfv_plus_norm": 17321, "zfv_singular_count": 6, "zfv_singular_primes": ["2,F^2-3*F-2*V-7", "5,F^2-7*F-V-7", "5,2*F^2-2*F+6"]}