# Stored data for abelian variety isogeny class 2.61.i_fe, downloaded from the LMFDB on 10 September 2025. {"abvar_count": 4352, "abvar_counts": [4352, 14622720, 51239686400, 191618228551680, 713417516717050112, 2654349068886488064000, 9876819661224594040600832, 36751696418791119856305438720, 136753054154474669162324615225600, 508858109121889417907343880025088000], "abvar_counts_str": "4352 14622720 51239686400 191618228551680 713417516717050112 2654349068886488064000 9876819661224594040600832 36751696418791119856305438720 136753054154474669162324615225600 508858109121889417907343880025088000 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.540867587810525, 0.625491882155472], "center_dim": 4, "cohen_macaulay_max": 3, "curve_count": 70, "curve_counts": [70, 3926, 225742, 13839406, 844684630, 51520376198, 3142738740190, 191707326362206, 11694146205191782, 713342910965055926], "curve_counts_str": "70 3926 225742 13839406 844684630 51520376198 3142738740190 191707326362206 11694146205191782 713342910965055926 ", "curves": ["y^2=15*x^6+31*x^5+55*x^4+31*x^3+55*x^2+31*x+15", "y^2=28*x^6+60*x^5+30*x^4+30*x^2+60*x+28", "y^2=48*x^6+52*x^5+40*x^4+16*x^3+18*x^2+27*x+45", "y^2=52*x^6+47*x^5+17*x^4+42*x^3+9*x^2+35*x+54", "y^2=54*x^6+25*x^5+x^4+48*x^3+25*x^2+9*x+59", "y^2=47*x^6+34*x^5+13*x^4+13*x^3+19*x^2+47*x+49", "y^2=15*x^6+10*x^5+59*x^4+5*x^3+59*x^2+10*x+15", "y^2=13*x^6+30*x^5+14*x^4+18*x^3+28*x^2+30*x+10", "y^2=13*x^6+38*x^5+49*x^4+14*x^3+49*x^2+38*x+13", "y^2=8*x^6+26*x^5+36*x^4+32*x^3+3*x^2+40*x+37", "y^2=5*x^6+10*x^5+36*x^4+58*x^3+36*x^2+10*x+5", "y^2=5*x^6+4*x^5+23*x^4+14*x^3+23*x^2+4*x+5", "y^2=40*x^6+34*x^5+24*x^4+9*x^3+24*x^2+34*x+40", "y^2=22*x^6+41*x^5+44*x^4+53*x^3+7*x^2+46*x+56", "y^2=41*x^6+2*x^5+60*x^4+55*x^3+46*x^2+23*x+27", "y^2=43*x^6+58*x^5+59*x^4+20*x^3+55*x^2+34*x+2", "y^2=34*x^6+36*x^5+50*x^4+29*x^3+50*x^2+36*x+34", "y^2=22*x^6+26*x^5+38*x^4+17*x^3+38*x^2+26*x+22", "y^2=56*x^6+34*x^5+19*x^4+49*x^3+22*x^2+15*x+5", "y^2=46*x^6+28*x^5+16*x^4+11*x^3+16*x^2+28*x+46", "y^2=4*x^6+56*x^5+55*x^4+39*x^3+33*x^2+54*x+43", "y^2=36*x^6+52*x^5+26*x^4+29*x^3+46*x^2+25*x+55", "y^2=12*x^6+57*x^5+48*x^4+24*x^3+3*x^2+20*x+42", "y^2=34*x^6+27*x^5+21*x^4+45*x^3+21*x^2+27*x+34", "y^2=40*x^6+58*x^5+19*x^4+32*x^3+15*x^2+15*x+12", "y^2=11*x^6+56*x^5+6*x^4+43*x^3+33*x^2+47*x+23", "y^2=47*x^6+38*x^5+2*x^4+29*x^3+17*x^2+31*x+49", "y^2=41*x^6+56*x^5+11*x^4+11*x^3+26*x^2+25*x+9", "y^2=28*x^6+42*x^5+51*x^4+33*x^3+51*x^2+42*x+28", "y^2=13*x^6+4*x^5+17*x^4+11*x^2+46*x+16", "y^2=53*x^6+37*x^5+28*x^4+4*x^3+50*x^2+38*x+11", "y^2=11*x^6+28*x^5+23*x^4+7*x^3+2*x^2+x+51", "y^2=9*x^6+30*x^5+15*x^4+40*x^3+13*x^2+41*x+57", "y^2=28*x^6+32*x^5+29*x^4+28*x^3+38*x^2+7*x+38", "y^2=57*x^6+26*x^5+45*x^4+57*x^3+42*x^2+40*x+49", "y^2=5*x^6+32*x^5+50*x^4+15*x^3+35*x^2+58*x+20", "y^2=14*x^6+14*x^5+19*x^4+54*x^3+13*x^2+27*x+57", "y^2=45*x^6+32*x^5+46*x^4+55*x^3+33*x^2+39*x+19", "y^2=44*x^6+49*x^5+6*x^4+42*x^3+6*x^2+49*x+44", "y^2=26*x^6+20*x^5+59*x^4+43*x^3+36*x^2+45", "y^2=43*x^5+48*x^4+23*x^3+13*x^2+43*x", "y^2=26*x^6+25*x^5+9*x^4+12*x^3+56*x^2+16*x+26", "y^2=35*x^6+27*x^5+37*x^4+9*x^3+59*x^2+4*x+17", "y^2=18*x^6+10*x^5+34*x^4+42*x^3+10*x^2+28*x+23", "y^2=49*x^6+19*x^5+41*x^4+34*x^3+41*x^2+19*x+49", "y^2=14*x^6+53*x^5+12*x^4+39*x^3+44*x^2+5*x+48", "y^2=22*x^6+x^5+41*x^4+44*x^3+41*x^2+x+22", "y^2=22*x^6+59*x^5+12*x^4+43*x^3+34*x^2+28*x+22", "y^2=9*x^6+45*x^5+42*x^4+30*x^3+41*x^2+60*x+3", "y^2=46*x^6+4*x^5+40*x^4+21*x^3+6*x^2+8*x+54", "y^2=18*x^6+52*x^5+15*x^4+23*x^3+47*x^2+19*x+7", "y^2=32*x^6+53*x^5+34*x^4+7*x^3+30*x^2+46*x+26", "y^2=48*x^5+39*x^4+12*x^3+39*x^2+48*x", "y^2=42*x^6+17*x^5+20*x^4+50*x^3+20*x^2+17*x+42", "y^2=11*x^6+43*x^5+56*x^4+39*x^3+47*x^2+37*x+37", "y^2=38*x^6+5*x^5+3*x^4+58*x^3+3*x^2+5*x+38", "y^2=33*x^6+22*x^5+5*x^4+14*x^3+5*x^2+22*x+33", "y^2=6*x^6+23*x^5+26*x^4+53*x^3+9*x^2+23*x+4", "y^2=4*x^6+43*x^5+21*x^4+43*x^3+21*x^2+43*x+4", "y^2=23*x^6+34*x^5+40*x^4+24*x^3+55*x^2+9*x+53", "y^2=60*x^6+16*x^5+2*x^4+17*x^3+58*x^2+45*x+31", "y^2=20*x^6+59*x^5+19*x^4+22*x^3+19*x^2+59*x+20", "y^2=34*x^6+11*x^5+17*x^4+54*x^3+17*x^2+11*x+34", "y^2=12*x^6+32*x^5+x^4+3*x^3+x^2+32*x+12", "y^2=20*x^6+28*x^5+6*x^4+2*x^3+6*x^2+28*x+20", "y^2=51*x^6+44*x^5+49*x^4+22*x^3+49*x^2+44*x+51", "y^2=9*x^6+25*x^5+44*x^4+59*x^3+44*x^2+25*x+9", "y^2=11*x^6+54*x^5+25*x^4+33*x^3+4*x^2+17*x+8", "y^2=20*x^6+59*x^5+52*x^4+47*x^3+52*x^2+59*x+20", "y^2=52*x^6+3*x^5+52*x^4+26*x^3+52*x^2+3*x+52", "y^2=36*x^6+38*x^5+4*x^4+13*x^3+13*x^2+43*x+12", "y^2=14*x^6+33*x^5+9*x^4+41*x^3+41*x^2+50*x+42", "y^2=26*x^6+45*x^5+22*x^4+25*x^3+22*x^2+45*x+26", "y^2=50*x^6+39*x^5+8*x^4+27*x^3+49*x^2+39*x+19", "y^2=36*x^6+4*x^5+15*x^4+43*x^3+48*x^2+19*x+47", "y^2=16*x^6+59*x^5+7*x^4+17*x^3+12*x^2+26*x+53", "y^2=50*x^6+18*x^5+60*x^4+22*x^3+39*x^2+8*x+13", "y^2=59*x^6+33*x^5+11*x^4+4*x^3+43*x^2+44*x+21", "y^2=20*x^6+60*x^5+40*x^4+18*x^3+40*x^2+60*x+20", "y^2=53*x^6+35*x^5+x^4+25*x^3+4*x^2+47*x+42", "y^2=39*x^6+51*x^5+x^4+6*x^3+9*x^2+54*x+34", "y^2=52*x^6+34*x^5+58*x^4+9*x^3+5*x^2+47*x+1", "y^2=32*x^6+34*x^5+5*x^4+18*x^3+5*x^2+34*x+32", "y^2=58*x^6+52*x^5+35*x^4+19*x^3+35*x^2+52*x+58", "y^2=55*x^6+29*x^5+20*x^4+4*x^3+15*x^2+43*x+7", "y^2=57*x^6+53*x^5+60*x^4+58*x^3+60*x^2+53*x+57", "y^2=47*x^6+44*x^5+34*x^4+6*x^3+34*x^2+44*x+47", "y^2=22*x^6+39*x^5+38*x^4+7*x^3+51*x^2+49*x+45", "y^2=46*x^6+32*x^5+17*x^4+26*x^3+17*x^2+32*x+46", "y^2=46*x^6+12*x^4+13*x^3+56*x^2+33*x+40", "y^2=27*x^6+9*x^5+30*x^4+10*x^3+32*x^2+20*x+3", "y^2=52*x^6+56*x^5+17*x^4+9*x^3+17*x^2+56*x+52", "y^2=39*x^6+50*x^5+52*x^4+38*x^3+52*x^2+50*x+39", "y^2=57*x^6+38*x^5+30*x^4+43*x^3+30*x^2+38*x+57", "y^2=3*x^6+53*x^5+27*x^4+31*x^3+46*x^2+50*x+28", "y^2=35*x^6+13*x^5+60*x^4+4*x^3+31*x^2+39*x+49", "y^2=32*x^6+19*x^5+15*x^4+58*x^3+48*x^2+14*x+35", "y^2=36*x^6+16*x^5+22*x^4+27*x^3+22*x^2+16*x+36", "y^2=18*x^6+10*x^5+58*x^4+22*x^3+52*x^2+29*x+59", "y^2=57*x^6+17*x^5+19*x^4+13*x^3+19*x^2+17*x+57", "y^2=34*x^6+44*x^5+13*x^4+57*x^3+39*x^2+30*x+3", "y^2=39*x^6+42*x^5+8*x^4+4*x^3+3*x+27", "y^2=38*x^6+11*x^5+40*x^4+50*x^3+17*x^2+31*x+53", "y^2=13*x^6+15*x^5+5*x^4+30*x^3+17*x^2+50*x+5", "y^2=42*x^5+33*x^4+56*x^3+6*x^2+46*x+30", "y^2=47*x^6+48*x^5+x^4+19*x^3+x^2+48*x+47", "y^2=59*x^6+26*x^5+15*x^4+19*x^3+60*x^2+8", "y^2=59*x^6+32*x^5+12*x^4+32*x^3+34*x^2+40*x+59", "y^2=52*x^6+3*x^5+15*x^4+10*x^3+15*x^2+3*x+52", "y^2=45*x^6+37*x^5+34*x^4+7*x^3+46*x^2+57*x+4", "y^2=58*x^6+x^5+23*x^4+10*x^3+42*x^2+32*x+30", "y^2=13*x^6+12*x^5+26*x^4+12*x^3+58*x^2+55*x+36"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 24, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.15.1", "2.0.52.1"], "geometric_splitting_field": "4.0.608400.5", "geometric_splitting_polynomials": [[94, -34, 35, -2, 1]], "group_structure_count": 11, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 112, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 112, "label": "2.61.i_fe", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.15.1", "2.0.52.1"], "p": 61, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 8, 134, 488, 3721], "poly_str": "1 8 134 488 3721 ", "primitive_models": [], "q": 61, "real_poly": [1, 8, 12], "simple_distinct": ["1.61.c", "1.61.g"], "simple_factors": ["1.61.cA", "1.61.gA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,-5*F-1"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.608400.5", "splitting_polynomials": [[94, -34, 35, -2, 1]], "twist_count": 4, "twists": [["2.61.ai_fe", "2.3721.hw_baao", 2], ["2.61.ae_eg", "2.3721.hw_baao", 2], ["2.61.e_eg", "2.3721.hw_baao", 2]], "weak_equivalence_count": 43, "zfv_index": 128, "zfv_index_factorization": [[2, 7]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 49920, "zfv_singular_count": 2, "zfv_singular_primes": ["2,-5*F-1"]}