# Stored data for abelian variety isogeny class 2.61.ae_da, downloaded from the LMFDB on 15 September 2025. {"abvar_count": 3552, "abvar_counts": [3552, 14378496, 51551884512, 191756453830656, 713387098916793312, 2654320418780500698624, 9876813824892306021282528, 36751697495934996154656620544, 136753055300465695318670329362912, 508858109598697359509116729024267776], "abvar_counts_str": "3552 14378496 51551884512 191756453830656 713387098916793312 2654320418780500698624 9876813824892306021282528 36751697495934996154656620544 136753055300465695318670329362912 508858109598697359509116729024267776 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.306334697860333, 0.602170846467095], "center_dim": 4, "cohen_macaulay_max": 3, "curve_count": 58, "curve_counts": [58, 3862, 227122, 13849390, 844648618, 51519820102, 3142736883106, 191707331980894, 11694146303188762, 713342911633469302], "curve_counts_str": "58 3862 227122 13849390 844648618 51519820102 3142736883106 191707331980894 11694146303188762 713342911633469302 ", "curves": ["y^2=60*x^6+30*x^5+17*x^4+29*x^2+16*x+22", "y^2=2*x^6+44*x^5+43*x^4+21*x^3+9*x^2+2*x+49", "y^2=13*x^6+35*x^5+53*x^4+9*x^3+49*x^2+53*x+8", "y^2=52*x^6+7*x^5+40*x^4+17*x^3+48*x^2+20*x+18", "y^2=38*x^6+10*x^5+4*x^4+13*x^3+49*x^2+8*x+21", "y^2=49*x^6+54*x^5+24*x^4+46*x^3+x^2+27*x+38", "y^2=27*x^6+26*x^5+42*x^4+14*x^3+30*x^2+26*x+48", "y^2=29*x^6+40*x^5+48*x^4+4*x^3+19*x^2+31*x+42", "y^2=38*x^6+42*x^5+31*x^4+24*x^3+11*x^2+47*x+39", "y^2=36*x^6+39*x^5+49*x^4+37*x^3+56*x^2+52*x+26", "y^2=39*x^6+30*x^5+23*x^4+44*x^3+29*x^2+23*x+34", "y^2=34*x^6+15*x^5+28*x^4+44*x^3+10*x^2+36*x+41", "y^2=49*x^6+6*x^5+59*x^4+56*x^3+47*x^2+53*x+42", "y^2=34*x^6+19*x^5+58*x^4+15*x^3+2*x^2+27*x+28", "y^2=8*x^6+24*x^5+57*x^4+42*x^3+24*x^2+26*x+42", "y^2=35*x^6+40*x^5+60*x^4+32*x^3+33*x^2+49", "y^2=37*x^5+43*x^4+20*x^3+30*x^2+44*x+3", "y^2=38*x^6+47*x^5+38*x^4+40*x^3+39*x^2+33", "y^2=15*x^6+13*x^5+41*x^4+x^3+27*x^2+53*x+47", "y^2=38*x^6+8*x^5+45*x^4+54*x^3+23*x^2+7*x+33", "y^2=6*x^6+16*x^5+32*x^4+31*x^3+25*x^2+52*x+59", "y^2=44*x^6+15*x^5+47*x^4+36*x^3+22*x^2+9*x+10", "y^2=13*x^6+44*x^5+34*x^4+27*x^3+49*x^2+55*x+26", "y^2=60*x^6+39*x^5+51*x^4+34*x^3+25*x^2+38*x+21", "y^2=10*x^6+56*x^5+9*x^4+13*x^3+12*x^2+14*x+37", "y^2=42*x^6+28*x^5+20*x^4+50*x^3+44*x^2+9*x+1", "y^2=34*x^6+47*x^5+6*x^4+51*x^3+10*x^2+21*x+54", "y^2=57*x^6+29*x^5+51*x^4+24*x^3+20*x^2+x+34", "y^2=25*x^6+10*x^5+3*x^4+33*x^3+40*x^2+54*x+39", "y^2=60*x^6+40*x^5+46*x^4+41*x^3+43*x^2+55*x+2", "y^2=7*x^6+49*x^5+2*x^4+50*x^3+23*x^2+3*x+10", "y^2=49*x^6+15*x^5+35*x^4+17*x^3+28*x^2+7*x+50", "y^2=29*x^6+39*x^5+49*x^4+12*x^3+50*x^2+12*x+1", "y^2=37*x^6+29*x^5+16*x^4+36*x^3+3*x^2+51*x+37", "y^2=23*x^6+26*x^5+8*x^4+43*x^3+16*x^2+42*x+2", "y^2=36*x^6+7*x^5+27*x^4+37*x^3+20*x^2+46*x", "y^2=15*x^6+47*x^5+23*x^4+59*x^3+29*x^2+43*x+28", "y^2=39*x^6+55*x^5+30*x^4+35*x^3+50*x^2+52*x+40", "y^2=34*x^6+48*x^5+55*x^4+25*x^3+58*x^2+24*x+35", "y^2=x^6+16*x^5+4*x^4+4*x^3+x^2+50*x+8", "y^2=35*x^6+43*x^5+4*x^4+50*x^3+60*x^2+11*x+16", "y^2=10*x^6+47*x^5+37*x^4+3*x^3+5*x^2+34*x+42", "y^2=55*x^6+48*x^5+16*x^4+42*x^3+46*x^2+2*x", "y^2=54*x^6+20*x^5+22*x^4+46*x^3+32*x^2+9", "y^2=17*x^6+41*x^5+43*x^3+20*x^2+22*x+20", "y^2=13*x^6+46*x^5+48*x^4+3*x^3+9*x^2+29*x+51", "y^2=6*x^6+24*x^5+39*x^4+23*x^3+25*x^2+27", "y^2=32*x^6+12*x^5+52*x^4+15*x^3+55*x^2+27*x+50", "y^2=18*x^6+54*x^5+11*x^4+36*x^3+60*x^2+26*x+29", "y^2=42*x^6+22*x^5+x^4+8*x^3+34*x^2+16*x+24", "y^2=20*x^6+4*x^5+13*x^4+21*x^3+6*x^2+18*x+48", "y^2=50*x^6+42*x^5+20*x^4+38*x^3+41*x^2+13*x+43", "y^2=18*x^6+8*x^5+12*x^4+5*x^3+17*x^2+58*x+44", "y^2=57*x^6+22*x^5+52*x^4+41*x^3+59*x^2+46*x+49", "y^2=56*x^6+30*x^5+42*x^4+37*x^3+50*x^2+13*x+38", "y^2=3*x^6+58*x^5+59*x^4+54*x^3+51*x^2+34*x+1", "y^2=58*x^6+24*x^5+12*x^4+11*x^3+23*x^2+16*x+34", "y^2=44*x^6+50*x^5+8*x^4+27*x^3+42*x^2+18*x+1", "y^2=59*x^6+17*x^5+26*x^4+56*x^3+23*x^2+16*x+12", "y^2=23*x^6+5*x^5+27*x^4+6*x^3+46*x^2+8*x+13", "y^2=45*x^6+60*x^5+11*x^4+56*x^3+26*x^2+29*x+6", "y^2=23*x^6+18*x^5+50*x^4+35*x^3+57*x^2+30*x+19", "y^2=6*x^6+46*x^5+13*x^4+47*x^3+41*x^2+46*x+57", "y^2=33*x^6+51*x^5+20*x^4+42*x^3+22*x^2+5*x+43", "y^2=17*x^6+29*x^5+59*x^4+14*x^3+57*x^2+12*x+35", "y^2=55*x^6+13*x^5+40*x^4+26*x^3+53*x^2+20*x+36", "y^2=11*x^6+37*x^5+13*x^4+60*x^3+11*x^2+7*x+40", "y^2=15*x^6+5*x^5+20*x^4+44*x^3+29*x^2+51*x+56", "y^2=36*x^6+13*x^5+2*x^4+47*x^3+4*x^2+4*x+4", "y^2=44*x^6+52*x^5+22*x^4+32*x^3+43*x^2+53*x+38", "y^2=51*x^6+40*x^5+58*x^4+40*x^3+40*x^2+8*x+37", "y^2=33*x^6+2*x^5+54*x^4+11*x^3+46*x^2+2*x+40", "y^2=31*x^6+24*x^5+15*x^4+34*x^3+8*x^2+11*x+39", "y^2=10*x^6+37*x^5+x^4+58*x^3+60*x^2+45*x+38", "y^2=25*x^6+54*x^5+33*x^4+24*x^3+8*x^2+41*x+8", "y^2=39*x^6+53*x^5+31*x^4+46*x^3+43*x^2+41*x+13", "y^2=27*x^6+41*x^5+20*x^4+20*x^3+22*x^2+35*x+49", "y^2=33*x^6+x^5+27*x^4+13*x^3+3*x^2+21*x+35", "y^2=3*x^6+44*x^5+44*x^4+54*x^3+37*x^2+40*x+25", "y^2=25*x^6+31*x^5+31*x^4+10*x^3+15*x^2+31*x+54", "y^2=37*x^6+21*x^5+6*x^4+34*x^3+9*x^2+15*x+26", "y^2=x^6+45*x^5+55*x^4+43*x^3+28*x^2+24*x+24", "y^2=35*x^6+x^5+12*x^4+41*x^3+59*x^2+30*x+18", "y^2=47*x^5+32*x^4+7*x^3+30*x^2+59*x+49", "y^2=2*x^6+56*x^5+25*x^4+27*x^3+16*x^2+15*x", "y^2=2*x^6+37*x^5+36*x^4+18*x^3+39*x^2+49*x+3", "y^2=24*x^6+8*x^5+49*x^4+54*x^3+53*x^2+10*x+36", "y^2=47*x^6+43*x^5+24*x^4+47*x^3+13*x^2+10*x+25", "y^2=20*x^6+46*x^5+24*x^4+6*x^3+42*x^2+47*x+26", "y^2=14*x^5+23*x^4+8*x^3+34*x^2+33*x+35", "y^2=45*x^6+49*x^5+9*x^4+49*x^3+59*x^2+33*x+46", "y^2=10*x^6+39*x^5+24*x^4+35*x^3+15*x^2+13*x+36", "y^2=53*x^6+41*x^5+58*x^4+x^3+37*x^2+9*x+27", "y^2=56*x^6+54*x^5+31*x^4+12*x^3+5*x^2+46*x+1", "y^2=60*x^6+25*x^5+56*x^4+44*x^3+2*x^2+52*x+34", "y^2=11*x^6+9*x^5+23*x^4+8*x^3+50*x^2+51*x+23", "y^2=35*x^6+19*x^5+58*x^4+47*x^3+57*x^2+24*x+24", "y^2=38*x^6+54*x^5+45*x^4+21*x^3+47*x^2+14*x+20", "y^2=49*x^6+16*x^5+31*x^4+4*x^3+35*x^2+18*x+50", "y^2=34*x^6+57*x^5+45*x^4+42*x^3+48*x^2+14*x+29", "y^2=58*x^6+49*x^5+26*x^4+42*x^3+47*x^2+57*x+18", "y^2=10*x^6+7*x^4+42*x^3+12*x^2+46*x+4", "y^2=20*x^6+27*x^5+57*x^4+8*x^3+13*x^2+31*x+16", "y^2=13*x^6+53*x^5+33*x^4+21*x^3+2*x^2+34*x+30", "y^2=14*x^6+34*x^5+34*x^4+22*x^2+60*x+15", "y^2=13*x^6+50*x^5+34*x^4+29*x^3+53*x^2+51*x+13", "y^2=35*x^6+5*x^5+6*x^4+28*x^3+20*x^2+52*x+59", "y^2=23*x^6+44*x^5+48*x^4+22*x^3+56*x^2+41*x+44", "y^2=23*x^6+55*x^5+17*x^4+48*x^3+47*x^2+55*x+44", "y^2=40*x^6+40*x^5+16*x^4+26*x^3+35*x^2+6*x+25", "y^2=26*x^6+53*x^5+52*x^4+36*x^3+20*x^2+23*x+2", "y^2=6*x^6+21*x^5+30*x^4+6*x^3+38*x^2+47*x+27", "y^2=14*x^6+50*x^5+52*x^4+5*x^3+29*x^2+22*x+31", "y^2=60*x^6+18*x^5+32*x^4+36*x^3+25*x^2+56*x+39", "y^2=18*x^6+11*x^5+53*x^4+7*x^3+3*x^2+52*x+49", "y^2=5*x^6+7*x^5+13*x^4+23*x^3+53*x^2+54*x+28", "y^2=6*x^6+45*x^5+2*x^4+57*x^3+20*x^2+27*x+15", "y^2=58*x^6+51*x^5+24*x^4+12*x^3+33*x^2+11*x+12", "y^2=54*x^6+27*x^5+8*x^3+26*x^2+24*x", "y^2=34*x^6+12*x^5+23*x^4+20*x^3+3*x^2+54", "y^2=6*x^6+30*x^5+35*x^4+2*x^3+53*x^2+21*x+45", "y^2=36*x^6+23*x^5+38*x^4+60*x^3+36*x^2+43*x+47", "y^2=13*x^6+43*x^5+22*x^4+18*x^3+56*x^2+46*x+29", "y^2=38*x^6+16*x^5+39*x^4+6*x^2+39*x+32", "y^2=53*x^6+53*x^5+41*x^4+21*x^3+20*x^2+2*x+51", "y^2=57*x^6+47*x^5+17*x^4+7*x^3+4*x^2+54*x+42", "y^2=37*x^6+47*x^5+33*x^4+40*x^3+4*x^2+11*x+26", "y^2=12*x^6+22*x^4+4*x^3+53*x^2+36*x+36", "y^2=59*x^6+15*x^5+21*x^4+34*x^3+44*x^2+8*x+20", "y^2=22*x^6+10*x^5+10*x^4+3*x^3+41*x^2+50*x+13", "y^2=30*x^6+57*x^5+55*x^4+54*x^3+54*x^2+19*x+23", "y^2=22*x^6+31*x^5+13*x^4+22*x^3+50*x^2+22*x+51", "y^2=53*x^6+17*x^5+55*x^4+50*x^3+54*x^2+42*x+58", "y^2=18*x^6+42*x^5+41*x^4+30*x^3+17*x^2+42*x+6", "y^2=44*x^5+37*x^4+3*x^3+9*x^2+53*x", "y^2=60*x^6+38*x^5+15*x^4+18*x^3+42*x^2+29*x+24", "y^2=52*x^6+14*x^5+52*x^4+6*x^3+59*x^2+26*x+57", "y^2=45*x^6+38*x^5+11*x^4+28*x^3+14*x^2+7*x+13", "y^2=12*x^6+9*x^5+34*x^3+24*x^2+22*x+21", "y^2=32*x^6+50*x^5+21*x^4+29*x^3+45*x^2+60*x+42", "y^2=9*x^6+56*x^5+28*x^4+20*x^3+60*x^2+9*x+48", "y^2=38*x^6+28*x^5+35*x^4+30*x^3+43*x^2+x+31", "y^2=56*x^6+45*x^5+41*x^4+19*x^2+14*x+56", "y^2=11*x^6+18*x^5+8*x^4+37*x^3+42*x^2+19*x+25", "y^2=5*x^6+28*x^5+10*x^4+27*x^3+18*x^2+9*x+25", "y^2=53*x^6+5*x^5+19*x^4+31*x^3+21*x^2+58*x+26", "y^2=x^6+4*x^5+51*x^4+38*x^3+44*x^2+24*x+21", "y^2=47*x^6+8*x^5+6*x^4+31*x^3+53*x^2+7*x+43", "y^2=46*x^6+28*x^5+43*x^4+17*x^3+60*x^2+6*x+42", "y^2=59*x^6+2*x^5+17*x^4+24*x^3+17*x^2+35*x+12", "y^2=34*x^6+29*x^5+37*x^4+13*x^3+23*x^2+14*x+33", "y^2=22*x^6+7*x^5+11*x^3+60*x^2+46*x+19", "y^2=6*x^6+58*x^5+21*x^4+15*x^3+41*x^2+16*x+48", "y^2=33*x^6+30*x^5+19*x^4+60*x^3+25*x^2+47*x+5", "y^2=32*x^6+38*x^5+30*x^4+16*x^3+50*x^2+39*x+52", "y^2=17*x^6+50*x^5+39*x^4+12*x^3+31*x^2+55*x+20", "y^2=39*x^6+47*x^5+9*x^4+48*x^3+8*x^2+24", "y^2=37*x^6+59*x^5+21*x^4+30*x^3+3*x^2+18*x+18", "y^2=56*x^6+32*x^5+3*x^4+24*x^3+19*x^2+7*x+8", "y^2=50*x^6+29*x^5+43*x^4+52*x^3+33*x^2+37*x+54", "y^2=49*x^6+4*x^5+2*x^4+45*x^3+14*x^2+6*x+39", "y^2=50*x^6+6*x^5+2*x^4+49*x^3+22*x^2+11*x+10", "y^2=50*x^6+54*x^5+47*x^4+4*x^3+28*x^2+20*x+33", "y^2=19*x^6+56*x^5+52*x^4+18*x^3+42*x^2+46*x+47", "y^2=54*x^6+3*x^5+24*x^4+59*x^3+14*x^2+10*x+30", "y^2=60*x^5+x^4+29*x^3+3*x^2+52*x+28", "y^2=39*x^6+36*x^5+9*x^4+13*x^3+15*x^2+47*x+46", "y^2=43*x^6+14*x^5+48*x^4+41*x^3+38*x^2+42*x+55", "y^2=40*x^6+23*x^5+41*x^4+38*x^3+40*x^2+19*x+57", "y^2=40*x^6+x^5+41*x^4+30*x^3+41*x^2+42*x+27", "y^2=15*x^6+45*x^5+33*x^4+38*x^3+43*x^2+46*x+29", "y^2=57*x^6+7*x^5+29*x^4+41*x^3+40*x^2+44*x+54", "y^2=26*x^6+26*x^5+34*x^4+2*x^3+35*x^2+20*x+57", "y^2=35*x^6+25*x^5+58*x^4+55*x^3+43*x+23", "y^2=30*x^6+26*x^5+59*x^4+22*x^3+59*x^2+36*x+43", "y^2=46*x^6+18*x^5+2*x^4+56*x^3+43*x^2+48*x+38", "y^2=48*x^6+13*x^5+55*x^4+10*x^3+17*x^2+51*x+20", "y^2=12*x^6+10*x^5+60*x^4+37*x^3+55*x^2+34*x+56", "y^2=11*x^6+15*x^5+15*x^4+53*x^3+29*x^2+54*x+48", "y^2=23*x^6+49*x^5+35*x^4+27*x^3+13*x^2+38*x+44", "y^2=7*x^6+9*x^5+51*x^4+12*x^3+18*x^2+25*x+16", "y^2=31*x^6+57*x^5+9*x^4+x^3+59*x^2+51*x+31", "y^2=3*x^6+48*x^5+38*x^4+58*x^3+4*x^2+29*x+20", "y^2=20*x^6+56*x^5+38*x^4+5*x^3+44*x^2+9*x+27", "y^2=40*x^6+22*x^5+7*x^4+23*x^3+18*x^2+49*x+57", "y^2=14*x^6+27*x^5+3*x^4+27*x^3+2*x^2+35*x+55", "y^2=23*x^6+51*x^5+57*x^4+50*x^3+60*x^2+52*x+37", "y^2=24*x^6+40*x^5+36*x^4+11*x^3+49*x^2+46*x+55", "y^2=38*x^6+2*x^5+10*x^4+30*x^3+7*x^2+x+19", "y^2=32*x^6+9*x^5+25*x^4+60*x^3+45*x^2+43*x+43", "y^2=22*x^6+40*x^5+3*x^4+14*x^3+28*x^2+45*x+11", "y^2=12*x^6+34*x^5+46*x^4+24*x^3+27*x^2+9*x+46", "y^2=18*x^6+47*x^5+50*x^4+9*x^3+12*x^2+26*x+11", "y^2=42*x^6+13*x^5+18*x^4+3*x^3+43*x^2+15*x+32", "y^2=60*x^6+52*x^5+19*x^4+34*x^3+54*x^2+51*x+41", "y^2=9*x^6+41*x^5+14*x^4+50*x^3+58*x^2+16*x+9", "y^2=58*x^5+32*x^4+23*x^3+50*x^2+56*x+20", "y^2=29*x^6+17*x^5+3*x^4+13*x^3+10*x^2+54*x", "y^2=32*x^6+42*x^5+44*x^4+17*x^3+57*x^2+60*x+47", "y^2=44*x^6+43*x^5+10*x^4+22*x^3+16*x^2+36*x+36", "y^2=52*x^6+34*x^5+40*x^4+36*x^3+49*x^2+44*x+45", "y^2=38*x^6+7*x^5+22*x^4+2*x^3+48*x^2+60*x+57", "y^2=21*x^6+41*x^5+10*x^4+15*x^3+3*x^2+15*x+52", "y^2=51*x^6+2*x^5+33*x^4+44*x^3+26*x^2+5*x+38", "y^2=9*x^6+46*x^5+14*x^4+38*x^3+12*x^2+57*x+53", "y^2=21*x^6+48*x^5+11*x^4+9*x^3+55*x^2+57*x+56", "y^2=56*x^6+x^5+50*x^4+43*x^3+37*x^2+11*x+34", "y^2=52*x^6+5*x^5+48*x^4+18*x^3+28*x^2+29*x+11", "y^2=18*x^6+45*x^5+59*x^4+9*x^3+13*x^2+16*x+26", "y^2=44*x^6+37*x^5+15*x^4+54*x^3+5*x^2+8*x+39", "y^2=55*x^6+59*x^5+37*x^4+41*x^3+57*x^2+x+57", "y^2=28*x^6+32*x^5+7*x^4+34*x^3+12*x^2+58*x+4", "y^2=43*x^6+20*x^5+55*x^4+33*x^3+30*x^2+19*x", "y^2=60*x^6+40*x^5+52*x^4+47*x^3+46*x^2+48*x+7", "y^2=42*x^6+24*x^5+22*x^4+33*x^3+59*x^2+38*x+31", "y^2=42*x^6+22*x^5+49*x^4+36*x^3+58*x^2+18*x+8", "y^2=33*x^6+57*x^5+47*x^4+23*x^3+42*x^2+40*x+43", "y^2=28*x^6+53*x^5+34*x^4+18*x^3+6*x^2+11*x+8", "y^2=13*x^6+32*x^5+50*x^4+10*x^3+37*x^2+44*x+10", "y^2=37*x^6+18*x^5+44*x^4+57*x^3+42*x^2+19*x+53", "y^2=55*x^6+56*x^5+11*x^4+18*x^3+28*x^2+30*x+18", "y^2=7*x^6+47*x^5+47*x^4+31*x^3+31*x^2+56*x+36", "y^2=25*x^6+50*x^5+48*x^4+43*x^3+40*x^2+6*x+4", "y^2=53*x^6+13*x^5+4*x^4+55*x^3+21*x^2+57*x+59", "y^2=50*x^6+33*x^5+25*x^4+4*x^3+34*x^2+8*x+29", "y^2=10*x^6+25*x^5+10*x^4+10*x^3+56*x^2+55*x+46", "y^2=33*x^6+41*x^5+29*x^4+48*x^3+56*x^2+45*x+46", "y^2=38*x^6+5*x^5+40*x^4+50*x^3+43*x^2+38*x+59", "y^2=x^6+3*x^5+47*x^4+21*x^3+31*x^2+19*x+27", "y^2=28*x^6+31*x^5+24*x^4+35*x^3+11*x^2+10*x+27", "y^2=12*x^6+21*x^5+24*x^4+16*x^3+56*x^2+21*x+8", "y^2=16*x^6+50*x^5+47*x^4+23*x^3+7*x^2+44*x+53", "y^2=2*x^6+3*x^5+50*x^4+6*x^3+24*x^2+36*x+55", "y^2=31*x^6+17*x^5+55*x^4+41*x^3+59*x^2+58*x+55", "y^2=36*x^6+41*x^5+43*x^4+23*x^3+6*x^2+37*x+23", "y^2=46*x^6+35*x^5+20*x^3+13*x^2+49*x+55", "y^2=47*x^5+50*x^4+22*x^3+31*x^2+31*x+1", "y^2=54*x^6+9*x^5+47*x^4+9*x^3+60*x^2+33*x+53", "y^2=2*x^6+52*x^5+30*x^4+13*x^3+54*x^2+17*x+58", "y^2=10*x^6+23*x^5+49*x^4+46*x^3+9*x^2+60*x+50", "y^2=59*x^6+17*x^5+44*x^4+60*x^3+48*x^2+45*x+7", "y^2=28*x^6+58*x^5+28*x^4+8*x^3+47*x^2+4*x+23", "y^2=25*x^6+5*x^5+55*x^4+58*x^3+55*x^2+35*x+24", "y^2=43*x^6+33*x^5+4*x^4+51*x^3+32*x^2+27*x+33", "y^2=30*x^6+57*x^5+36*x^4+40*x^3+3*x^2+57*x+42", "y^2=37*x^6+15*x^5+53*x^4+51*x^3+30*x^2+33*x+34", "y^2=54*x^6+17*x^5+25*x^4+41*x^3+5*x^2+8*x+33", "y^2=40*x^6+7*x^5+38*x^4+36*x^3+12*x^2+19*x+26", "y^2=60*x^6+31*x^5+8*x^4+47*x^3+6*x^2+48*x+52", "y^2=16*x^6+15*x^5+48*x^4+25*x^3+46*x^2+26*x+47", "y^2=40*x^6+12*x^5+8*x^4+23*x^3+2*x^2+6*x+47", "y^2=40*x^6+54*x^5+47*x^4+56*x^3+49*x^2+3*x+48", "y^2=57*x^6+46*x^5+23*x^4+55*x^3+30*x^2+43*x+45", "y^2=13*x^6+27*x^5+26*x^4+34*x^3+45*x^2+24*x+43", "y^2=41*x^6+37*x^5+56*x^4+45*x^3+16*x^2+27*x+17", "y^2=31*x^6+14*x^5+31*x^4+7*x^3+45*x^2+47*x+2", "y^2=10*x^6+56*x^5+40*x^4+37*x^3+42*x^2+4*x+52", "y^2=32*x^6+48*x^5+53*x^4+54*x^3+34*x^2+26*x+3", "y^2=41*x^6+17*x^5+55*x^4+40*x^3+x^2+31*x+22", "y^2=2*x^6+57*x^5+30*x^4+37*x^3+29*x^2+37*x+15", "y^2=24*x^6+30*x^5+26*x^4+39*x^3+8*x^2+19*x+1", "y^2=18*x^6+8*x^5+9*x^4+28*x^3+24*x^2+60*x+36", "y^2=3*x^6+36*x^5+43*x^4+36*x^3+6*x^2+26*x+28", "y^2=54*x^6+11*x^5+54*x^4+2*x^3+55*x^2+45*x+22", "y^2=52*x^6+9*x^5+50*x^4+7*x^3+35*x^2+9*x+17", "y^2=39*x^6+32*x^5+17*x^4+x^3+39*x^2+28*x+21", "y^2=35*x^6+54*x^5+15*x^4+25*x^2+52*x+40", "y^2=13*x^6+22*x^5+58*x^4+22*x^3+45*x^2+23*x+14", "y^2=29*x^6+3*x^5+58*x^4+29*x^3+11*x+13", "y^2=47*x^6+38*x^4+29*x^3+14*x^2+46*x+38", "y^2=22*x^6+37*x^5+36*x^4+47*x^3+19*x^2+46*x+17", "y^2=50*x^6+38*x^5+3*x^4+45*x^3+45*x^2+23*x+35", "y^2=19*x^6+32*x^5+3*x^4+31*x^3+7*x^2+33*x+31", "y^2=18*x^6+56*x^5+48*x^4+23*x^3+38*x^2+51*x+31", "y^2=23*x^6+50*x^5+2*x^4+60*x^3+55*x^2+36*x+41", "y^2=11*x^6+59*x^5+34*x^4+28*x^3+6*x^2+31*x+40", "y^2=57*x^6+3*x^5+x^4+49*x^2+3*x+20", "y^2=24*x^6+28*x^5+3*x^4+31*x^3+35*x^2+38*x+16", "y^2=47*x^6+8*x^5+7*x^4+56*x^3+38*x+58", "y^2=7*x^6+37*x^5+38*x^4+54*x^3+43*x^2+45*x+49", "y^2=7*x^6+57*x^5+37*x^4+51*x^3+53*x^2+38*x+32", "y^2=24*x^6+6*x^5+42*x^4+42*x^2+41*x+18", "y^2=30*x^6+49*x^5+20*x^4+47*x^3+19*x^2+38*x+60", "y^2=52*x^6+x^5+x^4+16*x^3+11*x^2+60*x+5", "y^2=32*x^6+16*x^5+11*x^3+34*x^2+37*x+4", "y^2=45*x^6+56*x^5+20*x^4+45*x^3+14*x^2+53*x+57", "y^2=60*x^6+30*x^4+10*x^3+29*x^2+20*x+3", "y^2=41*x^6+41*x^5+43*x^4+21*x^3+4*x^2+20*x+11", "y^2=4*x^6+37*x^5+11*x^4+25*x^3+57*x^2+9*x+5", "y^2=33*x^6+57*x^5+23*x^4+44*x^3+35*x^2+7*x+40", "y^2=15*x^6+38*x^5+15*x^4+x^3+2*x^2+50*x+4", "y^2=15*x^6+16*x^5+26*x^4+26*x^3+33*x^2+35*x+31", "y^2=50*x^6+25*x^5+4*x^4+10*x^3+39*x^2+44*x+7", "y^2=39*x^5+55*x^4+59*x^3+45*x^2+25*x+41", "y^2=10*x^6+x^5+42*x^4+7*x^3+54*x^2+31*x+38", "y^2=27*x^6+11*x^5+21*x^4+31*x^3+41*x^2+52*x", "y^2=39*x^6+33*x^5+7*x^4+21*x^3+45*x^2+41*x+13", "y^2=20*x^6+32*x^5+22*x^4+15*x^3+36*x^2+4*x+29", "y^2=29*x^6+59*x^5+16*x^4+31*x^3+26*x^2+7*x+52", "y^2=9*x^6+31*x^5+55*x^4+27*x^3+30*x^2+10*x+13", "y^2=40*x^6+19*x^5+41*x^4+50*x^3+47*x^2+16*x+3", "y^2=11*x^6+5*x^5+46*x^4+53*x^3+43*x^2+11*x+9", "y^2=36*x^6+19*x^5+53*x^4+48*x^3+58*x^2+23*x+11", "y^2=9*x^6+25*x^5+32*x^4+7*x^3+21*x^2+7*x+50", "y^2=8*x^6+39*x^5+9*x^4+37*x^3+45*x^2+42*x+4", "y^2=34*x^6+52*x^5+26*x^4+43*x^3+11*x^2+28*x+60", "y^2=59*x^6+32*x^5+31*x^4+52*x^3+32*x^2+28*x+2", "y^2=10*x^6+32*x^5+21*x^4+59*x^3+19*x^2+52*x+21", "y^2=19*x^6+40*x^4+52*x^3+24*x^2+51*x+29", "y^2=9*x^6+16*x^5+35*x^4+47*x^3+17*x^2+21*x+38", "y^2=9*x^6+17*x^5+49*x^4+42*x^3+9*x^2+10*x+40", "y^2=54*x^6+55*x^5+6*x^4+31*x^3+4*x^2+47*x+23", "y^2=33*x^6+44*x^5+20*x^4+20*x^3+21*x^2+11*x+27", "y^2=43*x^6+50*x^5+53*x^4+23*x^3+36*x^2+30*x+49", "y^2=58*x^6+7*x^5+38*x^4+37*x^3+19*x^2+37*x+58", "y^2=43*x^6+42*x^5+9*x^4+39*x^3+37*x^2+46*x+33", "y^2=46*x^6+60*x^5+2*x^4+57*x^3+43*x^2+45*x+15", "y^2=58*x^6+46*x^5+16*x^4+38*x^3+9*x^2+46*x+11", "y^2=15*x^5+8*x^4+45*x^3+53*x^2+21*x+21", "y^2=49*x^6+34*x^5+7*x^4+51*x^3+30*x^2+29*x+14", "y^2=4*x^6+46*x^5+14*x^4+13*x^3+48*x^2+27*x+2", "y^2=33*x^6+2*x^5+9*x^4+19*x^3+40*x^2+12*x+27", "y^2=41*x^6+57*x^5+23*x^4+9*x^3+19*x^2+25*x+6", "y^2=3*x^6+53*x^5+15*x^4+17*x^3+20*x^2+22*x+8", "y^2=13*x^6+21*x^5+43*x^4+22*x^3+43*x^2+16*x+24", "y^2=56*x^6+59*x^5+6*x^4+19*x^3+26*x^2+47*x+25", "y^2=6*x^6+57*x^5+2*x^4+44*x^3+9*x^2+57*x+26", "y^2=24*x^6+49*x^5+51*x^4+7*x^3+27*x^2+21*x+7", "y^2=27*x^6+20*x^5+7*x^4+55*x^3+13*x^2+46*x+14", "y^2=37*x^6+18*x^5+25*x^4+13*x^3+x^2+50*x+41", "y^2=37*x^6+60*x^5+20*x^3+57*x^2+31*x+18", "y^2=45*x^6+36*x^5+43*x^4+6*x^3+42*x^2+38*x+11", "y^2=32*x^6+46*x^5+36*x^4+57*x^3+50*x^2+3*x+20", "y^2=16*x^6+50*x^5+13*x^4+24*x^3+30*x+29", "y^2=38*x^6+33*x^5+32*x^4+25*x^3+41*x^2+36*x+16", "y^2=22*x^6+20*x^5+28*x^4+18*x^3+29*x+8", "y^2=52*x^6+15*x^5+6*x^4+14*x^3+32*x+37", "y^2=40*x^5+52*x^4+8*x^3+51*x^2+21*x+45", "y^2=8*x^6+32*x^5+2*x^4+36*x^3+17*x^2+15*x+6", "y^2=18*x^6+45*x^5+7*x^4+5*x^3+11*x^2+57*x+59", "y^2=53*x^6+42*x^4+57*x^3+2*x^2+50*x+56", "y^2=43*x^6+14*x^5+4*x^4+60*x^3+x^2+15*x+60", "y^2=22*x^6+42*x^5+3*x^4+54*x^3+21*x^2+35*x+14", "y^2=13*x^6+54*x^5+53*x^4+51*x^3+39*x^2+9*x+12", "y^2=56*x^6+23*x^5+55*x^4+27*x^3+42*x^2+54*x+36", "y^2=22*x^6+12*x^5+54*x^4+49*x^3+20*x^2+33*x+11", "y^2=43*x^6+7*x^5+18*x^4+44*x^3+15*x^2+56*x+57", "y^2=54*x^6+58*x^5+13*x^4+46*x^3+30*x^2+8*x+58", "y^2=60*x^6+14*x^5+33*x^4+29*x^3+38*x^2+39*x+22", "y^2=53*x^6+50*x^5+51*x^4+35*x^3+38*x^2+58*x+40", "y^2=60*x^6+6*x^5+45*x^4+41*x^3+16*x^2+43*x+26", "y^2=27*x^6+51*x^5+20*x^4+6*x^3+50*x^2+15*x+1", "y^2=10*x^6+8*x^5+20*x^4+16*x^3+27*x^2+56*x+51", "y^2=7*x^6+37*x^5+50*x^4+38*x^3+50*x^2+20*x+18", "y^2=32*x^6+22*x^5+41*x^4+16*x^3+6*x^2+19*x+56", "y^2=50*x^6+49*x^5+13*x^4+35*x^3+54*x^2+21*x+52", "y^2=50*x^6+26*x^5+29*x^4+x^3+20*x^2+41*x+12", "y^2=26*x^6+52*x^5+11*x^4+45*x^3+52*x^2+15*x+17", "y^2=32*x^6+39*x^5+17*x^4+20*x^3+2*x^2+22*x+45", "y^2=14*x^6+28*x^5+3*x^4+41*x^3+7*x^2+5*x+11", "y^2=49*x^6+37*x^5+35*x^4+56*x^3+21*x^2+21*x+55", "y^2=23*x^6+15*x^5+29*x^4+46*x^3+49*x^2+6*x+8", "y^2=32*x^6+50*x^5+31*x^4+16*x^3+36*x^2+12*x+40", "y^2=54*x^6+56*x^5+13*x^4+30*x^3+2*x^2+34*x+27", "y^2=51*x^6+9*x^5+7*x^4+3*x^3+47*x^2+25*x+48", "y^2=24*x^6+22*x^5+19*x^4+56*x^3+42*x^2+46*x+56", "y^2=41*x^6+18*x^5+9*x^4+29*x^3+36*x^2+28*x+8", "y^2=18*x^6+46*x^5+24*x^4+16*x^3+18*x^2+13*x+18", "y^2=49*x^6+45*x^5+28*x^4+33*x^3+10*x^2+42*x+58", "y^2=56*x^6+37*x^5+35*x^4+25*x^3+56*x^2+41*x+54", "y^2=46*x^6+20*x^5+12*x^4+28*x^3+12*x^2+46*x+3", "y^2=49*x^6+51*x^5+43*x^4+46*x^3+39*x^2+42*x+14", "y^2=6*x^6+5*x^5+59*x^4+13*x^3+20*x^2+4*x+56", "y^2=44*x^6+18*x^5+58*x^4+17*x^3+38*x^2+35*x+31", "y^2=9*x^6+46*x^5+36*x^4+39*x^3+57*x^2+5*x+39", "y^2=28*x^6+9*x^5+36*x^4+30*x^3+5*x^2+12*x+4", "y^2=25*x^6+23*x^5+12*x^3+28*x^2+19*x+42", "y^2=21*x^6+x^5+36*x^4+22*x^3+48*x^2+43*x+23", "y^2=5*x^6+12*x^5+36*x^4+18*x^3+53*x^2+25*x+22", "y^2=26*x^6+28*x^5+8*x^4+6*x^3+x^2+8*x+51", "y^2=42*x^6+9*x^5+8*x^4+8*x^3+8*x^2+17*x+60", "y^2=2*x^6+10*x^5+12*x^4+46*x^3+8*x^2+25*x+15", "y^2=18*x^6+42*x^5+48*x^4+20*x^3+59*x^2+29*x+12", "y^2=7*x^6+10*x^5+5*x^4+22*x^3+30*x^2+9*x+9", "y^2=34*x^6+38*x^5+10*x^4+57*x^3+25*x+28", "y^2=42*x^6+38*x^5+14*x^4+43*x^3+40*x^2+31*x+40", "y^2=26*x^6+36*x^5+45*x^4+50*x^3+9*x^2+16*x+45", "y^2=12*x^6+9*x^5+27*x^4+46*x^3+13*x^2+47*x+52", "y^2=56*x^6+28*x^5+54*x^4+26*x^3+23*x^2+20*x+21", "y^2=8*x^6+4*x^5+27*x^4+58*x^3+13*x^2+17*x+42", "y^2=21*x^6+27*x^5+30*x^4+32*x^3+41*x^2+25*x+8", "y^2=47*x^6+2*x^5+3*x^4+6*x^3+52*x^2+9*x+38", "y^2=7*x^6+9*x^5+60*x^4+11*x^3+5*x^2+60*x+4", "y^2=7*x^6+25*x^5+38*x^4+58*x^3+44*x^2+57*x+7", "y^2=16*x^6+9*x^5+12*x^4+26*x^3+29*x^2+13*x+5", "y^2=6*x^6+49*x^5+40*x^4+58*x^3+32*x^2+51*x+30", "y^2=18*x^6+43*x^5+17*x^4+14*x^3+27*x^2+3*x+48", "y^2=49*x^6+54*x^5+4*x^4+27*x^3+43*x^2+52*x+29", "y^2=40*x^6+33*x^5+10*x^4+53*x^3+21*x^2+47*x+50", "y^2=16*x^6+27*x^5+3*x^4+52*x^3+58*x^2+24*x+31", "y^2=50*x^6+53*x^5+28*x^4+10*x^3+7*x^2+16*x+16", "y^2=35*x^6+55*x^5+19*x^4+55*x^3+15*x^2+36*x+45", "y^2=33*x^6+7*x^5+47*x^4+44*x^3+55*x^2+51*x+5", "y^2=7*x^6+52*x^5+42*x^4+23*x^3+36*x^2+50*x+54", "y^2=37*x^6+20*x^5+37*x^4+19*x^3+13*x^2+45*x+29", "y^2=47*x^6+50*x^5+53*x^4+51*x^3+33*x^2+43*x+58", "y^2=39*x^6+12*x^5+35*x^4+53*x^3+53*x+19", "y^2=32*x^6+26*x^5+2*x^4+59*x^3+33*x^2+17*x+56", "y^2=56*x^6+19*x^5+46*x^4+19*x^3+54*x^2+38*x+14", "y^2=3*x^6+38*x^5+57*x^4+37*x^3+60*x^2+59*x+37", "y^2=56*x^6+7*x^5+13*x^4+8*x^3+56*x^2+38*x+50", "y^2=49*x^6+17*x^5+3*x^4+22*x^3+12*x^2+8*x+9", "y^2=60*x^6+2*x^5+18*x^4+2*x^3+32*x^2+39*x+23", "y^2=55*x^6+43*x^5+11*x^4+24*x^3+7*x^2+38*x+13", "y^2=58*x^6+15*x^5+30*x^4+45*x^3+24*x^2+13*x+27", "y^2=28*x^6+59*x^5+2*x^4+33*x^2+54*x+43", "y^2=37*x^6+28*x^5+35*x^4+45*x^3+28*x^2+23*x+42", "y^2=59*x^6+6*x^5+8*x^4+12*x^3+48*x^2+9*x+50", "y^2=52*x^6+31*x^5+16*x^4+10*x^3+47*x^2+40*x+5", "y^2=60*x^6+11*x^5+34*x^4+56*x^3+24*x^2+60*x+1", "y^2=34*x^5+58*x^4+6*x^3+12*x^2+20*x+35", "y^2=46*x^6+18*x^5+20*x^4+36*x^3+11*x^2+52*x+21", "y^2=41*x^6+47*x^5+17*x^4+44*x^3+16*x^2+57*x+8", "y^2=60*x^6+23*x^5+12*x^4+6*x^3+34*x^2+41*x+11", "y^2=38*x^6+41*x^5+5*x^4+5*x^3+11*x^2+36", "y^2=29*x^6+42*x^5+37*x^4+13*x^3+6*x^2+38*x+57", "y^2=41*x^6+19*x^5+19*x^4+7*x^3+36*x^2+40*x+40", "y^2=50*x^6+10*x^5+55*x^4+22*x^3+39*x^2+51*x+29", "y^2=3*x^6+40*x^5+5*x^4+59*x^3+10*x^2+59*x+56", "y^2=6*x^6+6*x^5+42*x^4+54*x^3+26*x^2+20*x+58", "y^2=54*x^6+x^5+41*x^4+33*x^3+9*x^2+29*x+23", "y^2=32*x^6+38*x^5+48*x^4+36*x^3+47*x^2+8*x", "y^2=53*x^6+16*x^5+44*x^4+31*x^3+51*x^2+15*x+60", "y^2=51*x^6+56*x^5+14*x^4+40*x^3+33*x^2+12*x+22", "y^2=20*x^6+53*x^5+41*x^4+48*x^3+51*x^2+48*x+18", "y^2=39*x^6+37*x^5+20*x^4+32*x^3+28*x^2+12*x+22", "y^2=19*x^6+52*x^5+36*x^4+59*x^3+23*x^2+36*x+8", "y^2=14*x^6+23*x^5+29*x^4+4*x^3+4*x^2+12*x+45", "y^2=60*x^6+35*x^5+20*x^4+36*x^3+51*x^2+51*x+21", "y^2=x^6+57*x^5+48*x^4+13*x^3+41*x^2+22*x+32", "y^2=13*x^5+15*x^4+2*x^3+21*x^2+16*x+21", "y^2=10*x^6+36*x^5+29*x^4+32*x^3+35*x^2+44*x+37", "y^2=21*x^6+54*x^5+56*x^4+21*x^3+13*x^2+8*x+25", "y^2=42*x^6+34*x^5+18*x^4+22*x^3+32*x^2+40*x+35", "y^2=19*x^6+49*x^5+41*x^4+35*x^3+9*x^2+55*x+36", "y^2=38*x^6+8*x^5+50*x^4+4*x^3+57*x^2+54*x+43", "y^2=33*x^6+57*x^5+6*x^4+28*x^3+23*x^2+42*x+6", "y^2=29*x^6+41*x^5+7*x^4+2*x^3+15*x^2+45*x+59", "y^2=12*x^6+37*x^5+5*x^4+7*x^3+45*x^2+17*x+52", "y^2=4*x^6+34*x^5+16*x^4+27*x^3+30*x+4", "y^2=24*x^6+7*x^5+28*x^4+35*x^3+36*x^2+57*x+35", "y^2=21*x^6+29*x^5+56*x^4+27*x^3+56*x^2+34*x+35", "y^2=39*x^6+38*x^5+8*x^4+8*x^3+39*x^2+43*x+13", "y^2=x^6+11*x^5+5*x^4+19*x^3+59*x^2+51*x+17", "y^2=53*x^6+26*x^5+44*x^4+49*x^3+6*x^2+49*x+36", "y^2=2*x^6+57*x^5+30*x^4+50*x^3+7*x^2+35*x+52", "y^2=58*x^6+52*x^4+31*x^3+59*x^2+42*x+19", "y^2=38*x^6+44*x^5+49*x^4+5*x^3+58*x^2+20*x+19", "y^2=24*x^6+51*x^5+10*x^4+15*x^3+x^2+22*x+51", "y^2=8*x^6+32*x^5+12*x^4+51*x^3+19*x^2+4*x+51", "y^2=41*x^6+4*x^5+2*x^4+60*x^3+39*x^2+19*x+51", "y^2=53*x^6+37*x^5+37*x^4+26*x^3+10*x^2+20*x+47", "y^2=43*x^6+53*x^5+34*x^4+15*x^3+6*x^2+48", "y^2=13*x^6+46*x^3+20*x^2+31*x+21", "y^2=36*x^6+13*x^5+41*x^4+8*x^3+42*x^2+4*x+1", "y^2=17*x^6+56*x^5+30*x^4+47*x^3+37*x^2+10*x+16", "y^2=3*x^6+50*x^5+35*x^4+13*x^3+22*x^2+33*x+9", "y^2=26*x^6+4*x^5+31*x^4+42*x^3+54*x^2+36*x+3"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 11, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.324864.1"], "geometric_splitting_field": "4.0.324864.1", "geometric_splitting_polynomials": [[141, 0, 24, 0, 1]], "group_structure_count": 6, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 468, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 468, "label": "2.61.ae_da", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.324864.1"], "p": 61, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -4, 78, -244, 3721], "poly_str": "1 -4 78 -244 3721 ", "primitive_models": [], "q": 61, "real_poly": [1, -4, -44], "simple_distinct": ["2.61.ae_da"], "simple_factors": ["2.61.ae_daA"], "simple_multiplicities": [1], "singular_primes": ["2,V-7"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.324864.1", "splitting_polynomials": [[141, 0, 24, 0, 1]], "twist_count": 2, "twists": [["2.61.e_da", "2.3721.fk_rde", 2]], "weak_equivalence_count": 17, "zfv_index": 64, "zfv_index_factorization": [[2, 6]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 4, "zfv_plus_index_factorization": [[2, 2]], "zfv_plus_norm": 36096, "zfv_singular_count": 2, "zfv_singular_primes": ["2,V-7"]}