# Stored data for abelian variety isogeny class 2.59.u_ik, downloaded from the LMFDB on 28 December 2025. {"abvar_count": 4900, "abvar_counts": [4900, 12250000, 41865252100, 146991376000000, 511086799841222500, 1779182052663552250000, 6193401430860649398444100, 21559171584274696786176000000, 75047496864038106517302639604900, 261240336517567029098973270156250000], "abvar_counts_str": "4900 12250000 41865252100 146991376000000 511086799841222500 1779182052663552250000 6193401430860649398444100 21559171584274696786176000000 75047496864038106517302639604900 261240336517567029098973270156250000 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.725626973200426, 0.725626973200426], "center_dim": 2, "curve_count": 80, "curve_counts": [80, 3518, 203840, 12130638, 714882400, 42180169358, 2488657599760, 146830397947678, 8662995854439920, 511116755282533598], "curve_counts_str": "80 3518 203840 12130638 714882400 42180169358 2488657599760 146830397947678 8662995854439920 511116755282533598 ", "curves": ["y^2=32*x^6+12*x^5+55*x^4+13*x^3+58*x^2+45*x+30", "y^2=6*x^6+56*x^5+44*x^4+56*x^3+58*x^2+11*x+30", "y^2=55*x^6+51*x^5+38*x^4+28*x^3+43*x^2+28*x+50", "y^2=22*x^6+36*x^5+55*x^4+11*x^3+46*x^2+2*x+15", "y^2=29*x^6+10*x^5+18*x^4+41*x^3+25*x^2+12*x+11", "y^2=13*x^6+58*x^5+33*x^4+34*x^3+56*x^2+8*x+20", "y^2=21*x^6+29*x^5+29*x^4+40*x^3+19*x^2+32*x+16", "y^2=15*x^6+6*x^5+18*x^4+51*x^3+18*x^2+6*x+15", "y^2=47*x^6+2*x^5+56*x^4+21*x^3+14*x^2+37*x+40", "y^2=50*x^5+57*x^4+55*x^3+28*x^2+48*x+52", "y^2=56*x^5+27*x^4+18*x^3+27*x^2+56*x", "y^2=9*x^6+30*x^4+30*x^2+9", "y^2=34*x^6+21*x^5+46*x^4+51*x^3+46*x^2+21*x+34", "y^2=16*x^6+33*x^5+2*x^4+57*x^3+42*x^2+39*x+27", "y^2=5*x^6+35*x^5+x^4+7*x^3+15*x^2+53*x+28", "y^2=45*x^6+27*x^5+25*x^4+9*x^3+25*x^2+27*x+45", "y^2=18*x^6+31*x^5+32*x^4+52*x^3+9*x^2+53*x+27", "y^2=14*x^6+25*x^5+31*x^4+20*x^3+37*x^2+37*x+26", "y^2=54*x^6+24*x^5+34*x^4+26*x^3+12*x^2+17*x+39", "y^2=19*x^6+31*x^5+40*x^4+51*x^3+40*x^2+31*x+19", "y^2=7*x^6+56*x^5+55*x^4+51*x^3+51*x^2+54*x+25", "y^2=51*x^5+53*x^4+4*x^3+45*x^2+54*x+1", "y^2=18*x^6+9*x^5+30*x^4+45*x^3+30*x^2+9*x+18", "y^2=55*x^6+12*x^5+15*x^4+x^3+46*x^2+57*x+44", "y^2=22*x^6+7*x^5+19*x^4+24*x^3+19*x^2+7*x+22", "y^2=56*x^6+23*x^4+23*x^2+56"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.136.1"], "geometric_splitting_field": "2.0.136.1", "geometric_splitting_polynomials": [[34, 0, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 26, "is_cyclic": false, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 26, "label": "2.59.u_ik", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [2, 5, 7], "number_fields": ["2.0.136.1"], "p": 59, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 20, 218, 1180, 3481], "poly_str": "1 20 218 1180 3481 ", "primitive_models": [], "q": 59, "real_poly": [1, 20, 100], "simple_distinct": ["1.59.k"], "simple_factors": ["1.59.kA", "1.59.kB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.136.1", "splitting_polynomials": [[34, 0, 1]], "twist_count": 6, "twists": [["2.59.au_ik", "2.3481.bk_kug", 2], ["2.59.a_s", "2.3481.bk_kug", 2], ["2.59.ak_bp", "2.205379.achg_cfcsg", 3], ["2.59.a_as", "2.12117361.tqq_ftlwfe", 4], ["2.59.k_bp", "2.42180533641.auswy_oqmnozpm", 6]]}