# Stored data for abelian variety isogeny class 2.59.ax_ji, downloaded from the LMFDB on 01 November 2025. {"abvar_count": 2344, "abvar_counts": [2344, 11963776, 42275043232, 146881144301056, 511119533535652024, 1779191427758799898624, 6193385884280799821104984, 21559180644025166337980995584, 75047499436634637739283548737952, 261240336850565768403682176752699776], "abvar_counts_str": "2344 11963776 42275043232 146881144301056 511119533535652024 1779191427758799898624 6193385884280799821104984 21559180644025166337980995584 75047499436634637739283548737952 261240336850565768403682176752699776 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.114899283644605, 0.31017959050279], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 37, "curve_counts": [37, 3437, 205840, 12121545, 714928187, 42180391622, 2488651352777, 146830459649809, 8662996151403760, 511116755934045677], "curve_counts_str": "37 3437 205840 12121545 714928187 42180391622 2488651352777 146830459649809 8662996151403760 511116755934045677 ", "curves": ["y^2=14*x^6+48*x^5+11*x^4+41*x^3+40*x^2+40*x+33", "y^2=29*x^6+9*x^5+40*x^4+x^3+58*x^2+39*x+31", "y^2=31*x^6+15*x^5+22*x^4+20*x^3+x^2+18*x+4", "y^2=30*x^6+31*x^5+41*x^4+7*x^3+48*x^2+10*x+21", "y^2=50*x^6+39*x^5+28*x^4+28*x^3+5*x^2+55*x+38", "y^2=47*x^6+48*x^5+36*x^4+28*x^3+31*x^2+25*x", "y^2=10*x^6+5*x^5+2*x^4+28*x^3+6*x^2+29*x+52", "y^2=13*x^6+54*x^5+51*x^4+5*x^3+14*x^2+45*x+51", "y^2=46*x^6+16*x^5+38*x^4+42*x^3+38*x^2+56*x+34", "y^2=50*x^6+20*x^5+53*x^4+10*x^3+19*x^2+5*x+3", "y^2=42*x^6+53*x^5+3*x^4+25*x^3+11*x^2+25*x+55", "y^2=38*x^6+15*x^5+32*x^4+58*x^3+42*x^2+26*x+42", "y^2=56*x^6+25*x^5+50*x^4+42*x^3+41*x+13", "y^2=37*x^6+18*x^5+29*x^4+39*x^3+53*x^2+27*x+34", "y^2=33*x^6+56*x^5+11*x^4+21*x^3+9*x^2+5*x+47", "y^2=54*x^6+39*x^5+58*x^4+24*x^3+55*x^2+21*x+23", "y^2=44*x^5+11*x^4+17*x^3+13*x^2+49*x+16", "y^2=35*x^6+10*x^5+32*x^4+12*x^3+12*x^2+18*x+43", "y^2=27*x^6+34*x^5+33*x^4+25*x^3+58*x^2+42*x+2", "y^2=15*x^6+31*x^5+41*x^4+39*x^3+30*x^2+10*x+45"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 2, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.1294821.2"], "geometric_splitting_field": "4.0.1294821.2", "geometric_splitting_polynomials": [[379, 73, 44, -1, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 20, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 20, "label": "2.59.ax_ji", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.1294821.2"], "p": 59, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -23, 242, -1357, 3481], "poly_str": "1 -23 242 -1357 3481 ", "primitive_models": [], "q": 59, "real_poly": [1, -23, 124], "simple_distinct": ["2.59.ax_ji"], "simple_factors": ["2.59.ax_jiA"], "simple_multiplicities": [1], "singular_primes": ["2,-F^2-3*F+4"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.1294821.2", "splitting_polynomials": [[379, 73, 44, -1, 1]], "twist_count": 2, "twists": [["2.59.x_ji", "2.3481.abt_epk", 2]], "weak_equivalence_count": 2, "zfv_index": 2, "zfv_index_factorization": [[2, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 4756, "zfv_singular_count": 2, "zfv_singular_primes": ["2,-F^2-3*F+4"]}