# Stored data for abelian variety isogeny class 2.59.a_ady, downloaded from the LMFDB on 18 October 2025. {"abvar_count": 3380, "abvar_counts": [3380, 11424400, 42180537620, 146747057766400, 511116754550304500, 1779197753912235264400, 6193386212896066524984020, 21559181044759241312069222400, 75047496554032956257199610419380, 261240336782036215806021042720250000], "abvar_counts_str": "3380 11424400 42180537620 146747057766400 511116754550304500 1779197753912235264400 6193386212896066524984020 21559181044759241312069222400 75047496554032956257199610419380 261240336782036215806021042720250000 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.0838471218744812, 0.916152878125519], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 60, "curve_counts": [60, 3278, 205380, 12110478, 714924300, 42180541598, 2488651484820, 146830462379038, 8662995818654940, 511116755799967598], "curve_counts_str": "60 3278 205380 12110478 714924300 42180541598 2488651484820 146830462379038 8662995818654940 511116755799967598 ", "curves": ["y^2=15*x^6+49*x^5+20*x^4+29*x^3+47*x^2+20*x+18", "y^2=51*x^6+19*x^5+20*x^4+28*x^2+43*x+21", "y^2=8*x^6+33*x^5+52*x^4+49*x^2+24*x+29", "y^2=6*x^6+30*x^5+41*x^4+52*x^3+x^2+38*x", "y^2=12*x^6+x^5+23*x^4+45*x^3+2*x^2+17*x", "y^2=2*x^6+27*x^5+49*x^4+30*x^3+52*x^2+15*x+27", "y^2=40*x^6+58*x^5+55*x^4+40*x^3+25*x^2+31*x+21", "y^2=4*x^6+10*x^5+48*x^4+18*x^3+14*x^2+24*x+50", "y^2=13*x^6+41*x^5+30*x^4+2*x^3+29*x^2+41*x+46", "y^2=52*x^6+55*x^5+30*x^4+x^3+13*x^2+47*x+22", "y^2=45*x^6+51*x^5+x^4+2*x^3+26*x^2+35*x+44", "y^2=32*x^6+20*x^5+53*x^4+51*x^3+31*x^2+16*x+29", "y^2=50*x^6+50*x^5+23*x^4+34*x^3+14*x^2+54*x+54", "y^2=41*x^6+41*x^5+46*x^4+9*x^3+28*x^2+49*x+49", "y^2=36*x^6+29*x^5+25*x^4+7*x^2+42*x+16", "y^2=6*x^6+15*x^5+44*x^4+30*x^2+58*x+11", "y^2=42*x^6+29*x^5+19*x^4+11*x^3+26*x^2+28*x+6", "y^2=25*x^6+58*x^5+38*x^4+22*x^3+52*x^2+56*x+12", "y^2=16*x^6+48*x^5+55*x^4+19*x^3+12*x^2+19*x+40", "y^2=35*x^6+18*x^5+41*x^4+23*x^3+55*x^2+3*x+36", "y^2=25*x^6+29*x^5+41*x^4+38*x^3+8*x^2+5*x+39", "y^2=48*x^6+37*x^5+23*x^4+48*x^3+29*x^2+3*x+6", "y^2=37*x^6+15*x^5+46*x^4+37*x^3+58*x^2+6*x+12", "y^2=22*x^6+58*x^5+50*x^4+18*x^3+32*x^2+30*x+46", "y^2=44*x^6+57*x^5+41*x^4+36*x^3+5*x^2+x+33", "y^2=17*x^6+49*x^5+45*x^4+19*x^3+51*x^2+33*x", "y^2=34*x^6+39*x^5+31*x^4+38*x^3+43*x^2+7*x", "y^2=x^6+44*x^5+13*x^4+56*x^3+12*x^2+34*x+56", "y^2=28*x^6+11*x^5+38*x^4+50*x^3+15*x^2+46*x+26", "y^2=56*x^6+22*x^5+17*x^4+41*x^3+30*x^2+33*x+52", "y^2=25*x^6+20*x^5+9*x^4+22*x^2+32*x+53", "y^2=18*x^6+19*x^5+42*x^4+50*x^3+7*x^2+12*x+5", "y^2=25*x^6+28*x^4+5*x^3+44*x^2+43", "y^2=34*x^6+13*x^5+38*x^4+32*x^3+21*x+49", "y^2=9*x^6+26*x^5+17*x^4+5*x^3+42*x+39", "y^2=37*x^6+57*x^5+50*x^4+34*x^3+21*x^2+56*x+41", "y^2=15*x^6+55*x^5+41*x^4+9*x^3+42*x^2+53*x+23", "y^2=25*x^6+40*x^5+36*x^4+10*x^3+8*x^2+15", "y^2=16*x^6+31*x^5+35*x^4+7*x^3+10*x^2+49*x+23", "y^2=4*x^6+35*x^5+8*x^4+30*x^3+5*x^2+57*x+42", "y^2=34*x^6+24*x^5+13*x^4+29*x^2+14*x+45", "y^2=42*x^6+19*x^5+52*x^4+24*x^2+56*x+58", "y^2=6*x^6+18*x^5+58*x^4+14*x^3+49*x^2+30*x+41", "y^2=6*x^6+15*x^5+37*x^4+27*x^3+41*x^2+51*x+36", "y^2=12*x^6+17*x^5+15*x^4+49*x^2+58*x+3", "y^2=49*x^6+39*x^5+14*x^4+4*x^3+25*x^2+32*x+53", "y^2=2*x^6+36*x^5+54*x^4+43*x^3+42*x^2+32*x+51", "y^2=4*x^6+13*x^5+49*x^4+27*x^3+25*x^2+5*x+43", "y^2=31*x^6+53*x^5+39*x^4+33*x^2+42*x+52", "y^2=22*x^6+9*x^5+4*x^4+x^2+40*x+28", "y^2=29*x^6+6*x^5+11*x^4+50*x^3+35*x^2+43*x+51", "y^2=58*x^6+12*x^5+22*x^4+41*x^3+11*x^2+27*x+43"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 7, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.55.1"], "geometric_splitting_field": "2.0.55.1", "geometric_splitting_polynomials": [[14, -1, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 52, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 52, "label": "2.59.a_ady", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.48400.3"], "p": 59, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 0, -102, 0, 3481], "poly_str": "1 0 -102 0 3481 ", "primitive_models": [], "q": 59, "real_poly": [1, 0, -220], "simple_distinct": ["2.59.a_ady"], "simple_factors": ["2.59.a_adyA"], "simple_multiplicities": [1], "singular_primes": ["2,-2*F+V+3"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.48400.3", "splitting_polynomials": [[196, 0, -27, 0, 1]], "twist_count": 6, "twists": [["2.59.ai_fe", "2.12117361.akeu_dayxwo", 4], ["2.59.a_dy", "2.12117361.akeu_dayxwo", 4], ["2.59.i_fe", "2.12117361.akeu_dayxwo", 4], ["2.59.ae_abr", "2.1779197418239532716881.vabxeolw_gjllhgjwktpvfsqg", 12], ["2.59.e_abr", "2.1779197418239532716881.vabxeolw_gjllhgjwktpvfsqg", 12]], "weak_equivalence_count": 7, "zfv_index": 64, "zfv_index_factorization": [[2, 6]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 256, "zfv_singular_count": 2, "zfv_singular_primes": ["2,-2*F+V+3"]}