# Stored data for abelian variety isogeny class 2.47.g_dz, downloaded from the LMFDB on 27 October 2025. {"abvar_count": 2601, "abvar_counts": [2601, 5267025, 10697351184, 23783909765625, 52611533192505681, 116192578948121145600, 256665544299761764840929, 566977462024427663628515625, 1252453152904122045519478766736, 2766668683338616723926406982150625], "abvar_counts_str": "2601 5267025 10697351184 23783909765625 52611533192505681 116192578948121145600 256665544299761764840929 566977462024427663628515625 1252453152904122045519478766736 2766668683338616723926406982150625 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.570213408101568, 0.570213408101568], "center_dim": 2, "curve_count": 54, "curve_counts": [54, 2380, 103032, 4874068, 229399074, 10779316990, 506620274382, 23811290421988, 1119130595587944, 52599131691643900], "curve_counts_str": "54 2380 103032 4874068 229399074 10779316990 506620274382 23811290421988 1119130595587944 52599131691643900 ", "curves": ["y^2=14*x^6+22*x^5+6*x^4+5*x^3+6*x^2+22*x+14", "y^2=34*x^6+21*x^5+6*x^4+41*x^3+15*x^2+40*x+24", "y^2=4*x^6+44*x^5+4*x^4+24*x^3+4*x^2+44*x+4", "y^2=24*x^6+26*x^5+21*x^4+8*x^3+5*x^2+30*x+41", "y^2=25*x^6+24*x^5+15*x^4+6*x^3+38*x^2+3*x+4", "y^2=43*x^6+21*x^5+35*x^4+7*x^3+35*x^2+27*x+3", "y^2=24*x^6+34*x^5+21*x^4+5*x^3+21*x^2+34*x+24", "y^2=19*x^6+3*x^5+22*x^4+18*x^3+42*x^2+6*x+39", "y^2=21*x^6+21*x^5+45*x^4+19*x^3+45*x^2+21*x+21", "y^2=16*x^6+36*x^5+31*x^4+21*x^3+31*x^2+36*x+16", "y^2=12*x^6+3*x^5+6*x^4+8*x^3+6*x^2+3*x+12", "y^2=4*x^6+37*x^5+11*x^4+40*x^3+32*x^2+7*x+22", "y^2=16*x^6+36*x^5+42*x^4+19*x^3+42*x^2+36*x+16", "y^2=24*x^6+13*x^5+32*x^4+35*x^3+21*x^2+44*x+4", "y^2=5*x^6+36*x^5+35*x^4+27*x^3+5*x^2+15*x+12", "y^2=36*x^6+18*x^5+26*x^4+18*x^3+26*x^2+18*x+36", "y^2=35*x^6+37*x^5+34*x^4+34*x^3+30*x^2+46*x+16", "y^2=46*x^6+14*x^5+38*x^4+38*x^3+15*x^2+35*x+42", "y^2=14*x^6+12*x^5+38*x^4+21*x^3+13*x^2+32*x+7", "y^2=42*x^6+31*x^5+4*x^3+39*x+3", "y^2=27*x^6+29*x^5+14*x^4+39*x^3+14*x^2+29*x+27", "y^2=x^6+20*x^5+41*x^4+18*x^3+41*x^2+20*x+1", "y^2=x^6+x^5+22*x^4+15*x^3+22*x^2+x+1", "y^2=20*x^6+20*x^5+6*x^4+39*x^3+5*x^2+2*x+19", "y^2=41*x^6+34*x^5+13*x^4+29*x^3+13*x^2+34*x+41", "y^2=39*x^6+2*x^4+2*x^3+2*x^2+39", "y^2=34*x^6+21*x^5+11*x^4+15*x^3+11*x^2+21*x+34", "y^2=36*x^6+12*x^5+10*x^4+2*x^3+10*x^2+12*x+36", "y^2=23*x^6+43*x^5+15*x^4+20*x^3+40*x^2+9*x+45", "y^2=37*x^6+33*x^5+36*x^4+41*x^3+36*x^2+33*x+37", "y^2=39*x^6+9*x^5+11*x^4+13*x^3+11*x^2+9*x+39", "y^2=27*x^6+9*x^5+15*x^4+24*x^3+37*x^2+30*x+42", "y^2=17*x^6+27*x^5+32*x^4+16*x^3+x^2+30*x+46", "y^2=36*x^6+36*x^5+12*x^4+46*x^3+12*x^2+36*x+36", "y^2=40*x^6+2*x^4+17*x^3+2*x^2+40", "y^2=39*x^6+42*x^5+26*x^4+4*x^3+26*x^2+42*x+39", "y^2=21*x^6+41*x^4+9*x^3+29*x^2+3", "y^2=19*x^6+16*x^5+13*x^4+11*x^3+13*x^2+16*x+19", "y^2=42*x^6+46*x^5+27*x^4+41*x^3+4*x^2+15*x+32", "y^2=12*x^6+45*x^5+19*x^4+14*x^3+19*x^2+45*x+12", "y^2=7*x^6+30*x^5+14*x^4+19*x^3+14*x^2+30*x+7", "y^2=18*x^6+20*x^5+40*x^4+46*x^3+40*x^2+20*x+18", "y^2=13*x^6+25*x^5+32*x^4+17*x^3+32*x^2+25*x+13", "y^2=44*x^6+34*x^5+18*x^4+33*x^3+18*x^2+34*x+44", "y^2=23*x^6+24*x^5+24*x^4+26*x^3+24*x^2+24*x+23", "y^2=26*x^6+37*x^5+2*x^4+44*x^3+2*x^2+37*x+26", "y^2=12*x^6+4*x^5+17*x^4+7*x^3+23*x^2+28*x+6", "y^2=x^6+27*x^5+26*x^4+14*x^3+26*x^2+27*x+1", "y^2=45*x^6+12*x^5+22*x^4+23*x^3+4*x^2+19*x+32", "y^2=37*x^6+45*x^5+36*x^4+23*x^3+36*x^2+45*x+37"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.179.1"], "geometric_splitting_field": "2.0.179.1", "geometric_splitting_polynomials": [[45, -1, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 50, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 50, "label": "2.47.g_dz", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.179.1"], "p": 47, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 6, 103, 282, 2209], "poly_str": "1 6 103 282 2209 ", "primitive_models": [], "q": 47, "real_poly": [1, 6, 9], "simple_distinct": ["1.47.d"], "simple_factors": ["1.47.dA", "1.47.dB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.179.1", "splitting_polynomials": [[45, -1, 1]], "twist_count": 6, "twists": [["2.47.ag_dz", "2.2209.go_rfv", 2], ["2.47.a_dh", "2.2209.go_rfv", 2], ["2.47.ad_abm", "2.103823.abem_utdu", 3], ["2.47.a_adh", "2.4879681.aihy_bmpoqd", 4], ["2.47.d_abm", "2.10779215329.fuka_dadyekpy", 6]]}