# Stored data for abelian variety isogeny class 2.47.at_gl, downloaded from the LMFDB on 09 September 2025. {"abvar_count": 1465, "abvar_counts": [1465, 4818385, 10777077655, 23791860074125, 52586601112361200, 116187921715697502385, 256666648330810750213435, 566977432189359154221955125, 1252452998669999205240720135565, 2766668681682586600112578344044800], "abvar_counts_str": "1465 4818385 10777077655 23791860074125 52586601112361200 116187921715697502385 256666648330810750213435 566977432189359154221955125 1252452998669999205240720135565 2766668681682586600112578344044800 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.0292875227882585, 0.372493218920453], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 29, "curve_counts": [29, 2183, 103805, 4875699, 229290364, 10778884931, 506622453583, 23811289169011, 1119130457771915, 52599131660159918], "curve_counts_str": "29 2183 103805 4875699 229290364 10778884931 506622453583 23811289169011 1119130457771915 52599131660159918 ", "curves": ["y^2=26*x^6+21*x^5+21*x^4+17*x^3+33*x^2+10*x", "y^2=46*x^6+10*x^5+31*x^4+20*x^3+7*x^2+14*x+41", "y^2=35*x^6+39*x^5+x^4+7*x^3+32*x^2+43*x+5", "y^2=30*x^6+32*x^5+24*x^4+6*x^3+29*x^2+23*x+38"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.1204533.1"], "geometric_splitting_field": "4.0.1204533.1", "geometric_splitting_polynomials": [[151, -35, 36, -2, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 4, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 4, "label": "2.47.at_gl", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.1204533.1"], "p": 47, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -19, 167, -893, 2209], "poly_str": "1 -19 167 -893 2209 ", "primitive_models": [], "q": 47, "real_poly": [1, -19, 73], "simple_distinct": ["2.47.at_gl"], "simple_factors": ["2.47.at_glA"], "simple_multiplicities": [1], "singular_primes": [], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.1204533.1", "splitting_polynomials": [[151, -35, 36, -2, 1]], "twist_count": 2, "twists": [["2.47.t_gl", "2.2209.abb_ackp", 2]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 253, "zfv_singular_count": 0, "zfv_singular_primes": []}