# Stored data for abelian variety isogeny class 2.47.a_bp, downloaded from the LMFDB on 07 October 2025. {"abvar_count": 2251, "abvar_counts": [2251, 5067001, 10779012544, 23838015291561, 52599132590788411, 116187111423709351936, 256666986187685419291579, 566977480505797528896302025, 1252453015827221310271320212416, 2766668749303339577549450571904921], "abvar_counts_str": "2251 5067001 10779012544 23838015291561 52599132590788411 116187111423709351936 256666986187685419291579 566977480505797528896302025 1252453015827221310271320212416 2766668749303339577549450571904921 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.321832721483378, 0.678167278516622], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 48, "curve_counts": [48, 2292, 103824, 4885156, 229345008, 10778809758, 506623120464, 23811291198148, 1119130473102768, 52599132945746772], "curve_counts_str": "48 2292 103824 4885156 229345008 10778809758 506623120464 23811291198148 1119130473102768 52599132945746772 ", "curves": ["y^2=11*x^6+16*x^5+39*x^4+30*x^3+38*x^2+31*x+3", "y^2=8*x^6+33*x^5+7*x^4+9*x^3+2*x^2+14*x+15", "y^2=6*x^6+43*x^5+11*x^4+26*x^3+41*x^2+19*x+44", "y^2=30*x^6+27*x^5+8*x^4+36*x^3+17*x^2+x+32", "y^2=20*x^6+13*x^5+23*x^4+3*x^3+22*x^2+41*x+2", "y^2=6*x^6+18*x^5+21*x^4+15*x^3+16*x^2+17*x+10", "y^2=13*x^6+38*x^5+26*x^4+16*x^3+25*x^2+29*x+28", "y^2=18*x^6+2*x^5+36*x^4+33*x^3+31*x^2+4*x+46", "y^2=2*x^6+34*x^5+9*x^4+14*x^3+18*x^2+29*x+28", "y^2=10*x^6+29*x^5+45*x^4+23*x^3+43*x^2+4*x+46", "y^2=14*x^6+37*x^5+x^4+46*x^3+31*x^2+26*x+2", "y^2=23*x^6+44*x^5+5*x^4+42*x^3+14*x^2+36*x+10", "y^2=19*x^6+27*x^5+46*x^4+33*x^3+28*x^2+18*x+37", "y^2=3*x^6+27*x^5+25*x^4+7*x^3+13*x^2+7*x+5", "y^2=31*x^6+21*x^5+18*x^4+20*x^2+31*x+9", "y^2=14*x^6+11*x^5+43*x^4+6*x^2+14*x+45", "y^2=43*x^6+45*x^5+39*x^4+17*x^3+33*x^2+36*x+18", "y^2=27*x^6+37*x^5+7*x^4+38*x^3+24*x^2+39*x+43", "y^2=22*x^6+11*x^5+7*x^4+13*x^3+2*x^2+17*x+9", "y^2=16*x^6+8*x^5+35*x^4+18*x^3+10*x^2+38*x+45", "y^2=40*x^6+43*x^5+x^4+38*x^3+6*x^2+28*x+12", "y^2=12*x^6+27*x^5+5*x^4+2*x^3+30*x^2+46*x+13", "y^2=33*x^6+44*x^4+15*x^3+17*x^2+6", "y^2=36*x^6+2*x^5+29*x^4+9*x^3+11*x^2+29*x+5", "y^2=39*x^6+10*x^5+4*x^4+45*x^3+8*x^2+4*x+25", "y^2=36*x^6+32*x^5+4*x^4+44*x^2+6*x+2", "y^2=39*x^6+19*x^5+20*x^4+32*x^2+30*x+10", "y^2=17*x^6+22*x^5+10*x^4+14*x^3+34*x^2+42*x+39", "y^2=38*x^6+16*x^5+3*x^4+23*x^3+29*x^2+22*x+7", "y^2=27*x^6+19*x^5+23*x^4+14*x^3+27*x^2+33*x+5", "y^2=41*x^6+x^5+21*x^4+23*x^3+41*x^2+24*x+25", "y^2=8*x^6+43*x^5+19*x^4+40*x^3+29*x^2+39*x+37", "y^2=40*x^6+27*x^5+x^4+12*x^3+4*x^2+7*x+44", "y^2=20*x^6+36*x^5+20*x^3+x+6", "y^2=18*x^6+34*x^5+19*x^4+34*x^3+12*x^2+34*x+9", "y^2=43*x^6+29*x^5+x^4+29*x^3+13*x^2+29*x+45", "y^2=46*x^6+24*x^5+36*x^4+21*x^3+42*x^2+37*x+17", "y^2=42*x^6+26*x^5+39*x^4+11*x^3+22*x^2+44*x+38", "y^2=7*x^6+31*x^5+33*x^3+15*x+43", "y^2=42*x^6+28*x^5+8*x^4+34*x^3+14*x^2+10*x+42", "y^2=22*x^6+46*x^5+40*x^4+29*x^3+23*x^2+3*x+22", "y^2=6*x^6+22*x^5+18*x^4+11*x^3+30*x^2+35*x+33", "y^2=8*x^6+28*x^5+19*x^4+44*x^3+41*x^2+23*x+22", "y^2=40*x^6+46*x^5+x^4+32*x^3+17*x^2+21*x+16", "y^2=21*x^6+33*x^5+46*x^4+33*x^3+23*x^2+20*x+17", "y^2=11*x^6+24*x^5+42*x^4+24*x^3+21*x^2+6*x+38", "y^2=36*x^6+43*x^5+31*x^4+17*x^3+30*x^2+45*x+11", "y^2=39*x^6+27*x^5+14*x^4+38*x^3+9*x^2+37*x+8", "y^2=45*x^6+14*x^5+13*x^4+8*x^3+30*x^2+33*x+3", "y^2=37*x^6+23*x^5+18*x^4+40*x^3+9*x^2+24*x+15", "y^2=26*x^6+42*x^5+26*x^4+13*x^3+19*x^2+25*x+43", "y^2=36*x^6+22*x^5+36*x^4+18*x^3+x^2+31*x+27", "y^2=46*x^6+25*x^5+4*x^4+27*x^3+29*x^2+x+3", "y^2=38*x^6+44*x^5+15*x^4+25*x^3+18*x^2+39*x+5", "y^2=2*x^6+32*x^5+28*x^4+31*x^3+43*x^2+7*x+25", "y^2=5*x^6+x^5+8*x^4+2*x^3+18*x^2+34*x+15", "y^2=25*x^6+5*x^5+40*x^4+10*x^3+43*x^2+29*x+28", "y^2=28*x^6+19*x^5+9*x^4+14*x^3+3*x^2+21*x+41", "y^2=46*x^6+x^5+45*x^4+23*x^3+15*x^2+11*x+17", "y^2=13*x^6+3*x^5+15*x^4+x^3+14*x^2+22*x+29", "y^2=18*x^6+15*x^5+28*x^4+5*x^3+23*x^2+16*x+4", "y^2=4*x^6+44*x^5+30*x^4+33*x^3+33*x^2+3*x+17", "y^2=20*x^6+32*x^5+9*x^4+24*x^3+24*x^2+15*x+38", "y^2=34*x^6+33*x^5+42*x^4+34*x^3+32*x^2+22", "y^2=29*x^6+24*x^5+22*x^4+29*x^3+19*x^2+16", "y^2=11*x^6+46*x^5+36*x^4+38*x^3+10*x^2+13*x+6", "y^2=8*x^6+42*x^5+39*x^4+2*x^3+3*x^2+18*x+30", "y^2=27*x^6+2*x^5+36*x^4+3*x^3+29*x^2+24*x+26", "y^2=43*x^6+24*x^5+7*x^4+8*x^3+37*x^2+26*x+35", "y^2=27*x^6+26*x^5+35*x^4+40*x^3+44*x^2+36*x+34", "y^2=14*x^6+40*x^5+8*x^4+38*x^3+20*x^2+33*x+25", "y^2=23*x^6+12*x^5+40*x^4+2*x^3+6*x^2+24*x+31"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.795.1"], "geometric_splitting_field": "2.0.795.1", "geometric_splitting_polynomials": [[199, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 72, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 72, "label": "2.47.a_bp", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 4, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.632025.1"], "p": 47, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 0, 41, 0, 2209], "poly_str": "1 0 41 0 2209 ", "primitive_models": [], "q": 47, "real_poly": [1, 0, -53], "simple_distinct": ["2.47.a_bp"], "simple_factors": ["2.47.a_bpA"], "simple_multiplicities": [1], "singular_primes": ["2,-F-3*V+7", "3,49*F+53*V"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.632025.1", "splitting_polynomials": [[289, 0, -19, 0, 1]], "twist_count": 2, "twists": [["2.47.a_abp", "2.4879681.ico_bltmnz", 4]], "weak_equivalence_count": 4, "zfv_index": 36, "zfv_index_factorization": [[2, 2], [3, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 18225, "zfv_singular_count": 4, "zfv_singular_primes": ["2,-F-3*V+7", "3,49*F+53*V"]}