# Stored data for abelian variety isogeny class 2.47.a_abj, downloaded from the LMFDB on 10 October 2025. {"abvar_count": 2175, "abvar_counts": [2175, 4730625, 10779404400, 23842468265625, 52599131802918375, 116195559218739360000, 256666986188127095025975, 566977351730544501519515625, 1252453015827223736342604937200, 2766668666420779222542166912640625], "abvar_counts_str": "2175 4730625 10779404400 23842468265625 52599131802918375 116195559218739360000 256666986188127095025975 566977351730544501519515625 1252453015827223736342604937200 2766668666420779222542166912640625 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.189277694487274, 0.810722305512726], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 48, "curve_counts": [48, 2140, 103824, 4886068, 229345008, 10779593470, 506623120464, 23811285789988, 1119130473102768, 52599131370006700], "curve_counts_str": "48 2140 103824 4886068 229345008 10779593470 506623120464 23811285789988 1119130473102768 52599131370006700 ", "curves": ["y^2=5*x^6+17*x^5+16*x^4+23*x^3+4*x^2+3*x+43", "y^2=25*x^6+38*x^5+33*x^4+21*x^3+20*x^2+15*x+27", "y^2=23*x^6+35*x^5+24*x^4+29*x^3+32*x^2+8*x+10", "y^2=21*x^6+34*x^5+26*x^4+4*x^3+19*x^2+40*x+3", "y^2=27*x^6+45*x^5+41*x^4+42*x^3+7*x^2+26*x+10", "y^2=39*x^6+27*x^5+15*x^4+17*x^3+5*x^2+26*x+34", "y^2=7*x^6+41*x^5+28*x^4+38*x^3+25*x^2+36*x+29", "y^2=44*x^6+16*x^5+44*x^4+27*x^3+24*x^2+9*x+37", "y^2=32*x^6+33*x^5+32*x^4+41*x^3+26*x^2+45*x+44", "y^2=13*x^6+35*x^5+12*x^4+29*x^3+21*x^2+8*x+44", "y^2=18*x^6+34*x^5+13*x^4+4*x^3+11*x^2+40*x+32", "y^2=42*x^6+15*x^5+27*x^4+11*x^3+5*x^2+35*x+30", "y^2=22*x^6+28*x^5+41*x^4+8*x^3+25*x^2+34*x+9", "y^2=28*x^6+19*x^5+42*x^4+40*x^3+33*x^2+12*x+36", "y^2=46*x^6+x^5+22*x^4+12*x^3+24*x^2+13*x+39", "y^2=6*x^6+31*x^5+6*x^3+24*x^2+36*x+23", "y^2=30*x^6+14*x^5+30*x^3+26*x^2+39*x+21", "y^2=33*x^6+32*x^5+14*x^4+7*x^3+31*x^2+19*x+39", "y^2=24*x^6+19*x^5+23*x^4+35*x^3+14*x^2+x+7", "y^2=24*x^6+9*x^5+20*x^4+42*x^2+24*x+2", "y^2=26*x^6+45*x^5+6*x^4+22*x^2+26*x+10", "y^2=38*x^6+45*x^5+38*x^4+46*x^3+12*x^2+33*x+37", "y^2=28*x^6+26*x^5+21*x^4+x^3+44*x^2+13*x+45", "y^2=19*x^6+8*x^5+11*x^4+46*x^3+7*x^2+18*x+24", "y^2=16*x^6+11*x^5+34*x^4+2*x^3+18*x^2+17*x+28", "y^2=33*x^6+8*x^5+29*x^4+10*x^3+43*x^2+38*x+46", "y^2=3*x^6+20*x^5+3*x^4+29*x^3+45*x+24", "y^2=15*x^6+6*x^5+15*x^4+4*x^3+37*x+26", "y^2=27*x^6+21*x^5+5*x^4+7*x^3+13*x^2+13", "y^2=41*x^6+11*x^5+25*x^4+35*x^3+18*x^2+18", "y^2=30*x^6+23*x^5+8*x^4+44*x^3+34*x^2+14*x+11", "y^2=9*x^6+21*x^5+40*x^4+32*x^3+29*x^2+23*x+8", "y^2=43*x^6+44*x^5+35*x^4+6*x^3+37*x^2+45*x+32", "y^2=27*x^6+32*x^5+34*x^4+30*x^3+44*x^2+37*x+19", "y^2=31*x^6+36*x^5+35*x^4+37*x^3+10*x^2+33*x+42", "y^2=14*x^6+39*x^5+34*x^4+44*x^3+3*x^2+24*x+22", "y^2=24*x^6+10*x^5+24*x^4+32*x^3+10*x^2+25*x+21", "y^2=26*x^6+3*x^5+26*x^4+19*x^3+3*x^2+31*x+11", "y^2=17*x^6+41*x^5+22*x^4+16*x^3+40*x^2+8*x+12", "y^2=38*x^6+17*x^5+16*x^4+33*x^3+12*x^2+40*x+13", "y^2=32*x^6+25*x^5+40*x^4+35*x^3+4*x^2+12*x+35", "y^2=34*x^6+44*x^5+15*x^4+10*x^3+35*x^2+4*x+5", "y^2=29*x^6+32*x^5+28*x^4+3*x^3+34*x^2+20*x+25", "y^2=28*x^6+14*x^5+19*x^4+27*x^3+7*x^2+42*x+26", "y^2=24*x^6+45*x^5+27*x^4+6*x^3+2*x^2+28*x+46", "y^2=26*x^6+37*x^5+41*x^4+30*x^3+10*x^2+46*x+42", "y^2=44*x^6+44*x^5+31*x^4+16*x^3+3*x^2+19*x+45", "y^2=32*x^6+32*x^5+14*x^4+33*x^3+15*x^2+x+37", "y^2=31*x^6+4*x^5+24*x^4+7*x^3+5*x^2+44*x+2", "y^2=14*x^6+20*x^5+26*x^4+35*x^3+25*x^2+32*x+10", "y^2=21*x^6+24*x^5+25*x^4+13*x^3+4*x^2+11*x+40", "y^2=11*x^6+26*x^5+31*x^4+18*x^3+20*x^2+8*x+12", "y^2=17*x^6+x^5+31*x^4+34*x^3+27*x^2+14*x+41", "y^2=38*x^6+5*x^5+14*x^4+29*x^3+41*x^2+23*x+17", "y^2=26*x^6+12*x^5+18*x^4+x^3+42*x^2+9*x+19", "y^2=36*x^6+13*x^5+43*x^4+5*x^3+22*x^2+45*x+1", "y^2=17*x^6+37*x^5+37*x^4+33*x^3+16*x^2+19*x+4", "y^2=38*x^6+44*x^5+44*x^4+24*x^3+33*x^2+x+20", "y^2=43*x^6+24*x^5+20*x^4+39*x^3+21*x^2+44*x+7", "y^2=27*x^6+26*x^5+6*x^4+7*x^3+11*x^2+32*x+35", "y^2=42*x^6+21*x^5+12*x^4+31*x^3+3*x^2+45*x+18", "y^2=22*x^6+11*x^5+13*x^4+14*x^3+15*x^2+37*x+43", "y^2=45*x^6+26*x^5+10*x^4+43*x^3+36*x^2+8*x+35", "y^2=37*x^6+36*x^5+3*x^4+27*x^3+39*x^2+40*x+34", "y^2=6*x^6+30*x^5+5*x^4+40*x^3+42*x^2+34*x+6", "y^2=30*x^6+9*x^5+25*x^4+12*x^3+22*x^2+29*x+30", "y^2=22*x^6+20*x^5+11*x^4+16*x^3+28*x^2+46*x+15", "y^2=16*x^6+6*x^5+8*x^4+33*x^3+46*x^2+42*x+28", "y^2=12*x^6+9*x^5+2*x^4+45*x^3+6*x^2+23*x+8", "y^2=13*x^6+45*x^5+10*x^4+37*x^3+30*x^2+21*x+40", "y^2=2*x^6+20*x^5+5*x^4+15*x^3+41*x^2+43*x+27", "y^2=10*x^6+6*x^5+25*x^4+28*x^3+17*x^2+27*x+41", "y^2=35*x^6+17*x^5+29*x^4+46*x^3+17*x^2+30*x+24", "y^2=34*x^6+38*x^5+4*x^4+42*x^3+38*x^2+9*x+26", "y^2=22*x^6+45*x^5+40*x^4+37*x^3+x^2+27*x+3", "y^2=16*x^6+37*x^5+12*x^4+44*x^3+5*x^2+41*x+15", "y^2=16*x^6+20*x^5+27*x^4+42*x^3+25*x^2+37*x+28", "y^2=33*x^6+6*x^5+41*x^4+22*x^3+31*x^2+44*x+46", "y^2=7*x^6+18*x^5+26*x^4+41*x^3+37*x^2+6*x+22", "y^2=25*x^6+44*x^5+16*x^4+9*x^3+33*x^2+23*x+4", "y^2=31*x^6+32*x^5+33*x^4+45*x^3+24*x^2+21*x+20", "y^2=9*x^6+15*x^5+34*x^4+3*x^3+x^2+36*x+1", "y^2=45*x^6+28*x^5+29*x^4+15*x^3+5*x^2+39*x+5", "y^2=44*x^6+13*x^5+25*x^4+26*x^3+11*x^2+18*x+11", "y^2=32*x^6+18*x^5+31*x^4+36*x^3+8*x^2+43*x+8", "y^2=2*x^6+18*x^5+9*x^4+36*x^3+31*x^2+36*x+19", "y^2=3*x^6+13*x^5+5*x^4+30*x^3+15*x^2+8*x+33", "y^2=15*x^6+18*x^5+25*x^4+9*x^3+28*x^2+40*x+24", "y^2=13*x^6+15*x^5+45*x^4+46*x^3+33*x^2+6*x+25", "y^2=18*x^6+28*x^5+37*x^4+42*x^3+24*x^2+30*x+31", "y^2=35*x^6+16*x^5+15*x^4+x^3+37*x^2+45*x+43", "y^2=34*x^6+33*x^5+28*x^4+5*x^3+44*x^2+37*x+27", "y^2=27*x^6+40*x^5+29*x^3+33*x+45", "y^2=27*x^6+29*x^5+5*x^4+37*x^3+35*x^2+18*x+2", "y^2=41*x^6+4*x^5+25*x^4+44*x^3+34*x^2+43*x+10", "y^2=39*x^6+25*x^5+9*x^4+21*x^3+18*x^2+16*x+40", "y^2=7*x^6+31*x^5+45*x^4+11*x^3+43*x^2+33*x+12", "y^2=23*x^6+28*x^5+16*x^4+13*x^3+40*x^2+29*x+31", "y^2=21*x^6+46*x^5+33*x^4+18*x^3+12*x^2+4*x+14", "y^2=19*x^6+4*x^5+13*x^4+13*x^3+20*x^2+39*x+27", "y^2=x^6+20*x^5+18*x^4+18*x^3+6*x^2+7*x+41", "y^2=42*x^6+42*x^5+45*x^4+29*x^3+34*x^2+41*x+44", "y^2=22*x^6+22*x^5+37*x^4+4*x^3+29*x^2+17*x+32", "y^2=15*x^6+43*x^5+19*x^4+40*x^3+18*x^2+33*x+19", "y^2=28*x^6+27*x^5+x^4+12*x^3+43*x^2+24*x+1", "y^2=20*x^6+41*x^5+19*x^4+16*x^3+22*x^2+2*x+36", "y^2=6*x^6+17*x^5+x^4+33*x^3+16*x^2+10*x+39", "y^2=35*x^6+13*x^5+x^4+24*x^3+11*x^2+22*x+8", "y^2=40*x^6+34*x^5+29*x^4+9*x^3+41*x^2+18*x+44", "y^2=12*x^6+29*x^5+4*x^4+45*x^3+17*x^2+43*x+32"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 2, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.7611.1"], "geometric_splitting_field": "2.0.7611.1", "geometric_splitting_polynomials": [[1903, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 110, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 110, "label": "2.47.a_abj", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 4, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.57927321.1"], "p": 47, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 0, -35, 0, 2209], "poly_str": "1 0 -35 0 2209 ", "primitive_models": [], "q": 47, "real_poly": [1, 0, -129], "simple_distinct": ["2.47.a_abj"], "simple_factors": ["2.47.a_abjA"], "simple_multiplicities": [1], "singular_primes": ["2,F^2-F-2*V+1"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.57927321.1", "splitting_polynomials": [[2209, 0, -35, 0, 1]], "twist_count": 2, "twists": [["2.47.a_bj", "2.4879681.jlq_brrirb", 4]], "weak_equivalence_count": 2, "zfv_index": 4, "zfv_index_factorization": [[2, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 3481, "zfv_singular_count": 2, "zfv_singular_primes": ["2,F^2-F-2*V+1"]}