# Stored data for abelian variety isogeny class 2.43.q_fu, downloaded from the LMFDB on 17 February 2026. {"abvar_count": 2704, "abvar_counts": [2704, 3504384, 6239104144, 11710193504256, 21610497073928464, 39958222599622768896, 73885920132053561054224, 136613944094421904801726464, 252599316910463469824590135696, 467056180000030419681408799213824], "abvar_counts_str": "2704 3504384 6239104144 11710193504256 21610497073928464 39958222599622768896 73885920132053561054224 136613944094421904801726464 252599316910463469824590135696 467056180000030419681408799213824 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.708828274827639, 0.708828274827639], "center_dim": 2, "curve_count": 60, "curve_counts": [60, 1894, 78468, 3425230, 147001740, 6321140278, 271820681556, 11688193293214, 502592578782684, 21611482878846214], "curve_counts_str": "60 1894 78468 3425230 147001740 6321140278 271820681556 11688193293214 502592578782684 21611482878846214 ", "curves": ["y^2=15*x^6+19*x^5+36*x^4+16*x^3+36*x^2+22*x+6", "y^2=3*x^6+5", "y^2=3*x^6+29*x^3+20", "y^2=32*x^6+21*x^5+23*x^4+36*x^3+4*x^2+6*x+8", "y^2=38*x^5+16*x^4+26*x^3+19*x^2+3*x+11", "y^2=2*x^6+41*x^5+3*x^4+39*x^3+18*x^2+14*x+2", "y^2=3*x^6+2*x^3+20", "y^2=35*x^6+5*x^4+5*x^2+35", "y^2=9*x^6+21*x^5+22*x^4+41*x^3+22*x^2+3*x+40", "y^2=7*x^6+32*x^4+32*x^2+7", "y^2=36*x^6+17*x^5+15*x^4+6*x^3+15*x^2+17*x+36", "y^2=4*x^6+42*x^5+5*x^4+32*x^3+5*x^2+42*x+4", "y^2=3*x^6+28*x^3+12", "y^2=15*x^6+11*x^5+15*x^4+22*x^3+3*x^2+9*x+9", "y^2=40*x^6+42*x^5+3*x^4+22*x^3+3*x^2+42*x+40", "y^2=3*x^6+27*x^3+37", "y^2=8*x^6+16*x^5+13*x^4+29*x^3+11*x^2+14*x+39", "y^2=36*x^5+19*x^4+30*x^3+19*x^2+36*x", "y^2=36*x^6+31*x^5+33*x^4+31*x^3+22*x^2+9*x+25", "y^2=4*x^6+18*x^5+26*x^4+5*x^3+26*x^2+18*x+4", "y^2=7*x^6+6*x^4+13*x^3+6*x^2+7", "y^2=40*x^6+7*x^5+38*x^4+19*x^3+5*x^2+31*x+38", "y^2=7*x^6+23*x^5+29*x^4+2*x^3+39*x^2+32*x+4", "y^2=18*x^6+x^5+33*x^4+19*x^3+33*x^2+x+18", "y^2=38*x^6+6*x^4+6*x^2+38"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.3.1"], "geometric_splitting_field": "2.0.3.1", "geometric_splitting_polynomials": [[1, -1, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 25, "is_cyclic": false, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 25, "label": "2.43.q_fu", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [2, 13], "number_fields": ["2.0.3.1"], "p": 43, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 16, 150, 688, 1849], "poly_str": "1 16 150 688 1849 ", "primitive_models": [], "q": 43, "real_poly": [1, 16, 64], "simple_distinct": ["1.43.i"], "simple_factors": ["1.43.iA", "1.43.iB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.3.1", "splitting_polynomials": [[1, -1, 1]], "twist_count": 24, "twists": [["2.43.aq_fu", "2.1849.bs_gew", 2], ["2.43.a_w", "2.1849.bs_gew", 2], ["2.43.aba_jv", "2.79507.aboa_ylfy", 3], ["2.43.ai_v", "2.79507.aboa_ylfy", 3], ["2.43.af_as", "2.79507.aboa_ylfy", 3], ["2.43.k_eh", "2.79507.aboa_ylfy", 3], ["2.43.n_ew", "2.79507.aboa_ylfy", 3], ["2.43.a_aw", "2.3418801.jng_blotoo", 4], ["2.43.av_hi", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.as_fv", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.an_ew", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.ak_eh", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.ad_bu", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.a_adf", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.a_cj", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.d_bu", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.f_as", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.i_v", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.s_fv", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.v_hi", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.ba_jv", "2.6321363049.amroe_ddchyiqg", 6], ["2.43.a_acj", "2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg", 12], ["2.43.a_df", "2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg", 12]]}