# Stored data for abelian variety isogeny class 2.43.b_abq, downloaded from the LMFDB on 21 September 2025. {"abvar_count": 1852, "abvar_counts": [1852, 3266928, 6341892496, 11700267413184, 21612809881092532, 39961434062272262400, 73885213018523397124708, 136614091208114145650621184, 252599304992529624782446942864, 467056163185867249513372563334128], "abvar_counts_str": "1852 3266928 6341892496 11700267413184 21612809881092532 39961434062272262400 73885213018523397124708 136614091208114145650621184 252599304992529624782446942864 467056163185867249513372563334128 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.190961148009004, 0.857627814675671], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 45, "curve_counts": [45, 1765, 79764, 3422329, 147017475, 6321648310, 271818080145, 11688205879729, 502592555069772, 21611482100826325], "curve_counts_str": "45 1765 79764 3422329 147017475 6321648310 271818080145 11688205879729 502592555069772 21611482100826325 ", "curves": ["y^2=3*x^6+3*x^3+42", "y^2=22*x^6+16*x^5+23*x^4+37*x^3+22*x^2+28*x+12", "y^2=21*x^6+7*x^5+34*x^4+12*x^3+3*x^2+31*x", "y^2=2*x^6+31*x^5+12*x^4+22*x^3+39*x^2+28*x+23", "y^2=7*x^6+7*x^5+4*x^4+25*x^3+34*x^2+14*x+16", "y^2=20*x^6+18*x^5+41*x^4+3*x^3+18*x^2+29*x+40", "y^2=35*x^6+24*x^5+18*x^4+25*x^3+28*x^2+16*x+13", "y^2=35*x^6+17*x^5+39*x^4+39*x^3+30*x^2+15*x", "y^2=7*x^6+5*x^5+35*x^4+30*x^3+28*x^2+13*x+30", "y^2=39*x^6+3*x^5+29*x^4+x^3+34*x^2+14*x+3", "y^2=34*x^6+37*x^5+5*x^4+35*x^3+4*x^2+4*x", "y^2=24*x^6+26*x^5+35*x^4+10*x^3+12*x^2+36*x+21", "y^2=25*x^6+21*x^5+3*x^4+22*x^3+4*x^2+32*x+4", "y^2=28*x^6+40*x^5+14*x^4+35*x^3+33*x^2+4*x+14", "y^2=15*x^5+3*x^4+6*x^3+20*x^2+16*x+3", "y^2=31*x^6+34*x^5+32*x^4+20*x^3+31*x^2+7*x+33", "y^2=15*x^6+26*x^5+32*x^4+15*x^3+6*x^2+18*x+25", "y^2=4*x^6+31*x^5+25*x^4+10*x^3+21*x^2+11*x+6", "y^2=12*x^6+9*x^5+30*x^4+40*x^3+36*x^2+38*x+3", "y^2=6*x^6+8*x^5+13*x^4+40*x^3+x^2+2*x+14", "y^2=4*x^6+9*x^5+28*x^4+15*x^3+19*x^2+28*x+27", "y^2=29*x^6+11*x^5+31*x^4+16*x^3+41*x^2+26*x+24", "y^2=18*x^6+24*x^5+20*x^4+10*x^3+32*x^2+11*x", "y^2=18*x^6+15*x^5+29*x^4+38*x^3+38*x^2+24*x+41", "y^2=41*x^6+41*x^5+21*x^4+10*x^3+20*x^2+22*x+39", "y^2=18*x^6+22*x^5+41*x^4+21*x^3+15*x^2+4*x+34", "y^2=8*x^6+7*x^5+38*x^4+29*x^3+33*x^2+27*x+29", "y^2=32*x^6+31*x^5+11*x^4+22*x^3+40*x^2+15*x+25", "y^2=22*x^6+3*x^4+22*x^3+15*x^2+17*x+27", "y^2=3*x^6+3*x^3+34", "y^2=16*x^6+20*x^5+4*x^4+12*x^3+18*x^2+34*x+22", "y^2=7*x^6+3*x^5+13*x^4+15*x^3+18*x^2+40*x+31", "y^2=23*x^6+39*x^5+20*x^4+3*x^3+39*x^2+10*x+17", "y^2=3*x^6+9*x^3+27", "y^2=3*x^6+3*x^3+30", "y^2=6*x^6+18*x^5+36*x^4+28*x^3+11*x^2+10*x+34", "y^2=7*x^6+7*x^5+23*x^4+26*x^3+21*x^2+8*x+2", "y^2=29*x^6+15*x^5+25*x^4+42*x^3+32*x^2+26*x+20", "y^2=36*x^6+22*x^5+13*x^4+16*x^3+2*x^2+25*x+12", "y^2=9*x^6+36*x^5+13*x^4+28*x^3+7*x^2+10*x+17", "y^2=8*x^6+17*x^5+16*x^4+26*x^3+3*x^2+4", "y^2=42*x^6+32*x^5+3*x^4+20*x^3+26*x^2+21*x+21", "y^2=22*x^6+33*x^5+18*x^4+3*x^3+23*x^2+22*x+12", "y^2=25*x^6+15*x^5+24*x^4+27*x^3+7*x^2+30*x+6", "y^2=11*x^5+3*x^4+12*x^3+29*x^2+18*x+18", "y^2=12*x^6+4*x^4+x^3+9*x^2+33*x+6", "y^2=4*x^6+33*x^5+13*x^4+30*x^3+34*x^2+16*x+25"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 16, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 3, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.19.1"], "geometric_splitting_field": "2.0.19.1", "geometric_splitting_polynomials": [[5, -1, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 47, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 47, "label": "2.43.b_abq", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.3249.1"], "p": 43, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 1, -42, 43, 1849], "poly_str": "1 1 -42 43 1849 ", "primitive_models": [], "q": 43, "real_poly": [1, 1, -128], "simple_distinct": ["2.43.b_abq"], "simple_factors": ["2.43.b_abqA"], "simple_multiplicities": [1], "singular_primes": ["2,9*F-10*V-9", "7,-5*F^2-2*F-4", "3,F+7"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.3249.1", "splitting_polynomials": [[25, -5, -4, -1, 1]], "twist_count": 6, "twists": [["2.43.ab_abq", "2.1849.adh_hyu", 2], ["2.43.ac_dj", "2.79507.jw_jzmc", 3], ["2.43.ab_abq", "2.6321363049.qfzo_ecuhifpm", 6], ["2.43.a_dh", "2.6321363049.qfzo_ecuhifpm", 6], ["2.43.c_dj", "2.6321363049.qfzo_ecuhifpm", 6], ["2.43.a_adh", "2.39959630797262576401.abxwgkbaq_cecwpobvtgieueo", 12]], "weak_equivalence_count": 16, "zfv_index": 378, "zfv_index_factorization": [[2, 1], [3, 3], [7, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 3, "zfv_plus_index_factorization": [[3, 1]], "zfv_plus_norm": 1764, "zfv_singular_count": 6, "zfv_singular_primes": ["2,9*F-10*V-9", "7,-5*F^2-2*F-4", "3,F+7"]}