# Stored data for abelian variety isogeny class 2.43.am_es, downloaded from the LMFDB on 18 December 2025. {"abvar_count": 1444, "abvar_counts": [1444, 3610000, 6410564356, 11696400000000, 21606541641923044, 39957704713794490000, 73885253269721695551556, 136614152017984262400000000, 252599374430655370674518564644, 467056168277714579091694740250000], "abvar_counts_str": "1444 3610000 6410564356 11696400000000 21606541641923044 39957704713794490000 73885253269721695551556 136614152017984262400000000 252599374430655370674518564644 467056168277714579091694740250000 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.348746511119089, 0.348746511119089], "center_dim": 2, "curve_count": 32, "curve_counts": [32, 1950, 80624, 3421198, 146974832, 6321058350, 271818228224, 11688211082398, 502592693229632, 21611482336434750], "curve_counts_str": "32 1950 80624 3421198 146974832 6321058350 271818228224 11688211082398 502592693229632 21611482336434750 ", "curves": ["y^2=18*x^5+x^4+18*x^3+12*x^2+42*x+24", "y^2=3*x^6+12*x^5+33*x^4+38*x^3+33*x^2+12*x+3", "y^2=27*x^6+29*x^5+26*x^4+7*x^3+28*x^2+26*x+32", "y^2=5*x^6+26*x^5+24*x^4+23*x^3+16*x^2+9*x+13", "y^2=41*x^6+27*x^5+12*x^4+22*x^3+18*x^2+7*x+4", "y^2=34*x^6+42*x^5+38*x^4+x^3+14*x^2+8*x+2", "y^2=37*x^6+23*x^5+2*x^4+8*x^3+18*x^2+14*x+12", "y^2=7*x^6+3*x^5+35*x^4+29*x^3+33*x^2+5*x+17", "y^2=41*x^6+34*x^4+34*x^2+41", "y^2=34*x^6+32*x^5+32*x^4+11*x^3+14*x^2+11*x+22", "y^2=29*x^6+5*x^5+x^4+8*x^3+x^2+5*x+29", "y^2=29*x^6+18*x^5+26*x^4+42*x^3+18*x^2+30*x+7", "y^2=41*x^6+26*x^5+27*x^4+3*x^3+27*x^2+26*x+41", "y^2=2*x^6+8*x^5+34*x^4+22*x^3+7*x^2+42*x+42", "y^2=20*x^6+21*x^5+21*x^4+6*x^2+41*x+3", "y^2=37*x^6+12*x^5+32*x^4+17*x^3+5*x^2+41*x+7", "y^2=20*x^6+23*x^4+5*x^3+23*x^2+20", "y^2=18*x^6+6*x^5+5*x^4+22*x^3+30*x^2+30*x+29", "y^2=21*x^6+16*x^5+39*x^4+12*x^3+39*x^2+15*x+27", "y^2=27*x^6+30*x^5+22*x^4+28*x^3+29*x^2+42*x+8", "y^2=22*x^6+28*x^5+6*x^4+37*x^3+6*x^2+28*x+22", "y^2=32*x^6+15*x^5+17*x^4+16*x^3+x^2+32*x+32", "y^2=42*x^6+42*x^5+5*x^4+30*x^3+22*x^2+6*x+35", "y^2=38*x^5+42*x^4+3*x^3+40*x^2+10*x+24", "y^2=30*x^6+30*x^4+30*x^2+30", "y^2=29*x^6+18*x^5+20*x^4+11*x^3+20*x^2+18*x+29"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.136.1"], "geometric_splitting_field": "2.0.136.1", "geometric_splitting_polynomials": [[34, 0, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 26, "is_cyclic": false, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 26, "label": "2.43.am_es", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [2, 19], "number_fields": ["2.0.136.1"], "p": 43, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -12, 122, -516, 1849], "poly_str": "1 -12 122 -516 1849 ", "primitive_models": [], "q": 43, "real_poly": [1, -12, 36], "simple_distinct": ["1.43.ag"], "simple_factors": ["1.43.agA", "1.43.agB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.136.1", "splitting_polynomials": [[34, 0, 1]], "twist_count": 6, "twists": [["2.43.a_by", "2.1849.dw_jek", 2], ["2.43.m_es", "2.1849.dw_jek", 2], ["2.43.g_ah", "2.79507.bqy_batvm", 3], ["2.43.a_aby", "2.3418801.doe_scrww", 4], ["2.43.ag_ah", "2.6321363049.aritg_embpqbzy", 6]]}