# Stored data for abelian variety isogeny class 2.41.g_cw, downloaded from the LMFDB on 26 October 2025. {"abvar_count": 2008, "abvar_counts": [2008, 3020032, 4724119192, 7982741864448, 13422076284068248, 22563452521893707008, 37929469773423845596888, 63758996189794400788021248, 107178912745414800190134915928, 180167787825252695980268163788032], "abvar_counts_str": "2008 3020032 4724119192 7982741864448 13422076284068248 22563452521893707008 37929469773423845596888 63758996189794400788021248 107178912745414800190134915928 180167787825252695980268163788032 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 2, "angles": [0.472048372862174, 0.687749235717316], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 48, "curve_counts": [48, 1794, 68544, 2824990, 115851168, 4750096290, 194755519440, 7984920880318, 327381878733840, 13422659672884674], "curve_counts_str": "48 1794 68544 2824990 115851168 4750096290 194755519440 7984920880318 327381878733840 13422659672884674 ", "curves": ["y^2=9*x^6+25*x^5+18*x^4+34*x^3+22*x^2+30*x+21", "y^2=33*x^6+26*x^5+27*x^4+24*x^3+6*x^2+x+26", "y^2=14*x^6+20*x^5+20*x^4+38*x^2+39*x+33", "y^2=25*x^6+31*x^5+40*x^4+x^3+7*x^2+38*x+18", "y^2=13*x^6+13*x^5+12*x^4+20*x^3+26*x^2+32*x+37", "y^2=34*x^6+3*x^4+7*x^3+11*x^2+9*x+4", "y^2=32*x^6+20*x^5+16*x^4+20*x^3+23*x+38", "y^2=7*x^6+35*x^5+40*x^4+10*x^3+38*x^2+14", "y^2=27*x^6+39*x^5+x^4+30*x^3+x^2+25*x+8", "y^2=37*x^6+18*x^5+x^4+38*x^3+25*x^2+33*x+10", "y^2=18*x^6+38*x^5+10*x^4+7*x^3+28*x^2+21*x+28", "y^2=4*x^6+23*x^5+31*x^4+20*x^3+11*x^2+29*x+1", "y^2=35*x^6+37*x^5+9*x^4+25*x^3+21*x^2+38*x+17", "y^2=10*x^6+24*x^5+39*x^3+24*x^2+11*x+35", "y^2=8*x^6+39*x^5+39*x^4+21*x^3+9*x^2+23*x+17", "y^2=38*x^6+11*x^5+21*x^4+6*x^3+34*x^2+33*x+19", "y^2=7*x^6+21*x^5+6*x^4+3*x^3+10*x^2+37*x+40", "y^2=33*x^6+18*x^5+33*x^4+24*x^3+6*x+22", "y^2=14*x^6+38*x^5+39*x^4+27*x^3+14*x^2+14*x", "y^2=39*x^6+28*x^5+19*x^4+35*x^3+35*x^2+10*x+40", "y^2=30*x^6+15*x^5+22*x^4+10*x^3+4*x^2+37*x+5", "y^2=8*x^6+26*x^5+2*x^4+28*x^3+35*x^2+29*x+33", "y^2=21*x^5+24*x^4+26*x^3+12*x^2+28*x+14", "y^2=17*x^6+16*x^5+19*x^4+2*x^3+x^2+7*x+28", "y^2=38*x^6+30*x^5+24*x^4+22*x^3+35*x^2+10*x+4", "y^2=7*x^6+38*x^5+13*x^4+34*x^3+31*x^2+5*x+18", "y^2=36*x^6+18*x^5+16*x^4+19*x^3+36*x^2+17*x+37", "y^2=17*x^6+27*x^5+28*x^4+2*x^3+37*x^2+6*x+18", "y^2=37*x^6+10*x^5+28*x^4+20*x^3+39*x^2+15*x+31", "y^2=24*x^6+6*x^5+7*x^4+38*x^3+27*x^2+3*x+21", "y^2=32*x^6+24*x^5+20*x^4+3*x^3+10*x^2+12*x+9", "y^2=8*x^6+2*x^5+14*x^4+5*x^3+15*x^2+36*x+28", "y^2=6*x^6+24*x^5+7*x^4+33*x^3+21*x^2+29*x+15", "y^2=2*x^6+16*x^5+23*x^4+13*x^3+33*x^2+7*x+2", "y^2=10*x^6+22*x^5+35*x^4+16*x^3+17*x^2+2", "y^2=3*x^6+2*x^5+40*x^4+18*x^3+32*x^2+26*x+37", "y^2=38*x^6+12*x^5+9*x^4+28*x^3+26*x^2+26*x+22", "y^2=7*x^6+14*x^5+4*x^4+12*x^3+7*x^2+24*x+32", "y^2=31*x^6+9*x^5+13*x^4+14*x^3+22*x+30", "y^2=37*x^6+18*x^5+2*x^4+16*x^3+5*x^2+7*x+38", "y^2=32*x^6+35*x^5+16*x^4+21*x^3+18*x^2+5*x+4", "y^2=17*x^6+27*x^5+27*x^4+33*x^3+10*x^2+5*x+37", "y^2=34*x^6+7*x^5+20*x^4+24*x^3+5*x^2+39*x+14", "y^2=17*x^6+20*x^5+23*x^4+9*x^3+28*x^2+25*x+34", "y^2=25*x^6+38*x^5+22*x^4+17*x^3+26*x^2+17*x+34", "y^2=24*x^6+29*x^5+28*x^4+7*x^3+37*x^2+6*x+39", "y^2=31*x^6+20*x^5+19*x^4+36*x^3+22*x^2+32*x+40", "y^2=5*x^6+4*x^5+35*x^4+21*x^3+32*x^2+38*x+27", "y^2=19*x^6+16*x^5+28*x^4+22*x^3+9*x^2+40*x+1", "y^2=17*x^6+33*x^5+21*x^4+33*x^3+20*x^2+23*x+9", "y^2=24*x^6+36*x^5+16*x^4+7*x^3+21*x^2+20*x", "y^2=32*x^6+14*x^5+39*x^4+24*x^3+3*x^2+38*x+39", "y^2=31*x^6+33*x^5+30*x^3+20*x^2+38*x+1", "y^2=18*x^5+17*x^4+32*x^3+10*x^2+17*x+11", "y^2=32*x^6+25*x^5+35*x^4+13*x^3+8*x+25", "y^2=9*x^6+12*x^5+30*x^4+8*x^3+23*x^2+10*x+22", "y^2=25*x^6+2*x^5+15*x^4+37*x^3+39*x^2+6*x+19", "y^2=2*x^6+29*x^5+17*x^4+11*x^3+4*x^2+15*x", "y^2=20*x^6+13*x^5+7*x^4+8*x^3+24*x^2+38*x", "y^2=13*x^6+34*x^5+28*x^4+30*x^3+11*x^2+9*x+1", "y^2=27*x^6+31*x^5+5*x^4+27*x^3+35*x^2+4*x+3", "y^2=4*x^6+8*x^5+27*x^4+2*x^3+8*x^2+26*x+22", "y^2=33*x^6+25*x^5+26*x^4+29*x^3+18*x^2+9*x+4", "y^2=16*x^6+16*x^5+24*x^4+13*x^3+19*x^2+20*x+38", "y^2=19*x^6+20*x^5+33*x^4+35*x^3+17*x^2+7*x+14", "y^2=40*x^6+29*x^5+32*x^4+31*x^3+11*x^2+19*x+12", "y^2=18*x^6+7*x^5+31*x^4+27*x^3+36*x^2+24*x+24", "y^2=6*x^6+5*x^5+14*x^4+24*x^3+9*x^2+31*x+28", "y^2=37*x^6+29*x^5+16*x^4+36*x^3+28*x^2+38*x+37", "y^2=x^5+10*x^4+17*x^3+35*x^2+9*x+21", "y^2=21*x^6+11*x^5+3*x^4+33*x^3+34*x^2+20*x+1", "y^2=40*x^5+30*x^4+28*x^3+16*x^2+10*x+24", "y^2=26*x^6+17*x^5+15*x^4+34*x^2+25", "y^2=10*x^6+34*x^5+16*x^4+38*x^3+23*x^2+3*x+17", "y^2=x^6+22*x^5+25*x^4+37*x^3+8*x^2+5*x+31", "y^2=4*x^6+34*x^5+33*x^4+11*x^3+4*x^2+20*x+32", "y^2=17*x^6+37*x^5+37*x^4+26*x^3+21*x^2+29*x+8", "y^2=21*x^6+21*x^5+28*x^4+31*x^3+37*x^2+24*x+1", "y^2=16*x^5+31*x^4+40*x^3+13*x^2+28*x+20", "y^2=16*x^6+29*x^5+33*x^4+10*x^3+4*x^2+14*x+40", "y^2=17*x^6+8*x^5+x^4+18*x^3+40*x^2+7*x+8", "y^2=39*x^6+30*x^5+2*x^4+37*x^3+16*x^2+17*x+10", "y^2=22*x^6+6*x^5+37*x^4+7*x^3+30*x^2+26*x+37", "y^2=33*x^6+20*x^5+38*x^4+21*x^3+11*x^2+25*x+23", "y^2=x^6+20*x^5+19*x^4+18*x^3+31*x^2+5*x+20", "y^2=6*x^6+26*x^5+x^4+36*x^3+35*x^2+22*x+9", "y^2=38*x^6+9*x^5+29*x^4+33*x^3+40*x^2+28*x+8", "y^2=4*x^6+27*x^5+2*x^4+4*x^3+14*x^2+22*x+37", "y^2=25*x^6+7*x^5+27*x^4+x^3+23*x^2+39*x+3", "y^2=28*x^6+13*x^5+38*x^4+15*x^3+22*x^2+18*x+4", "y^2=3*x^6+34*x^5+22*x^4+39*x^3+17*x^2+38*x+34", "y^2=39*x^6+7*x^5+11*x^4+27*x^3+33*x^2+32*x+8", "y^2=17*x^6+30*x^5+4*x^4+7*x^3+19*x^2+12*x+30", "y^2=38*x^6+8*x^5+37*x^4+31*x^3+22*x^2+28*x+11", "y^2=35*x^6+23*x^5+22*x^4+4*x^3+28*x^2+27*x", "y^2=35*x^6+x^5+38*x^4+25*x^3+30*x^2+34*x+15", "y^2=29*x^6+19*x^5+26*x^4+6*x^3+37*x^2+14*x+17", "y^2=18*x^6+27*x^5+18*x^4+25*x^3+37*x^2+15*x+34", "y^2=3*x^6+2*x^5+2*x^4+7*x^3+40*x^2+22*x+27", "y^2=2*x^6+40*x^5+9*x^4+x^3+30*x^2+35*x+25", "y^2=20*x^6+11*x^5+26*x^4+31*x^3+21*x^2+6*x+6", "y^2=37*x^6+28*x^5+39*x^4+28*x^3+15*x^2+31*x+5", "y^2=10*x^6+35*x^5+8*x^4+25*x^3+26*x^2+36*x+32", "y^2=34*x^6+16*x^5+24*x^4+25*x^3+11*x^2+7*x+16", "y^2=21*x^6+36*x^5+5*x^4+8*x^2+10*x+20", "y^2=19*x^6+39*x^5+31*x^4+18*x^3+31*x^2+2*x+15", "y^2=40*x^6+18*x^5+12*x^4+20*x^3+17*x^2+40*x", "y^2=34*x^6+38*x^5+26*x^4+31*x^3+28*x^2+28", "y^2=16*x^6+18*x^5+6*x^4+21*x^3+5*x^2+16*x+19", "y^2=16*x^5+5*x^4+37*x^3+6*x^2+31*x+26", "y^2=30*x^6+22*x^5+15*x^4+39*x^3+15*x^2+17*x+19", "y^2=10*x^6+15*x^5+10*x^4+22*x^3+28*x^2+30*x+3", "y^2=9*x^6+32*x^5+15*x^4+38*x^3+8*x^2+24*x", "y^2=29*x^6+37*x^5+18*x^4+9*x^3+21*x^2+28*x+5", "y^2=8*x^6+38*x^5+28*x^4+30*x^3+8*x^2+24*x+12", "y^2=32*x^6+x^5+20*x^4+24*x^3+27*x^2+29*x+8", "y^2=7*x^6+13*x^5+37*x^4+24*x^3+21*x^2+37*x+29", "y^2=24*x^6+24*x^5+4*x^4+25*x^3+31*x^2+29*x+22", "y^2=18*x^6+33*x^5+22*x^4+10*x^3+2*x^2+21*x+13", "y^2=37*x^6+27*x^5+20*x^4+9*x^3+30*x^2+18*x+11", "y^2=x^6+30*x^5+17*x^4+22*x^3+16*x^2+3*x+2", "y^2=20*x^6+36*x^5+38*x^4+13*x^3+15*x^2+26*x+16", "y^2=23*x^6+23*x^5+32*x^4+29*x^3+34*x^2+22*x+2", "y^2=5*x^6+22*x^5+19*x^4+15*x^3+x^2+31*x+2"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 9, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.83232.1"], "geometric_splitting_field": "4.0.39168.3", "geometric_splitting_polynomials": [[46, -12, 14, 0, 1]], "group_structure_count": 3, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 124, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 124, "label": "2.41.g_cw", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.83232.1"], "p": 41, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 3, 1, 2], [1, 13, 1, 16], [1, 19, 1, 8]], "poly": [1, 6, 74, 246, 1681], "poly_str": "1 6 74 246 1681 ", "primitive_models": [], "principal_polarization_count": 124, "q": 41, "real_poly": [1, 6, -8], "simple_distinct": ["2.41.g_cw"], "simple_factors": ["2.41.g_cwA"], "simple_multiplicities": [1], "singular_primes": ["2,-F^2-V-4"], "size": 240, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.39168.3", "splitting_polynomials": [[46, -12, 14, 0, 1]], "twist_count": 2, "twists": [["2.41.ag_cw", "2.1681.ei_isk", 2]], "weak_equivalence_count": 12, "zfv_index": 32, "zfv_index_factorization": [[2, 5]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_pic_size": 64, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 18432, "zfv_singular_count": 2, "zfv_singular_primes": ["2,-F^2-V-4"]}