# Stored data for abelian variety isogeny class 2.41.b_aci, downloaded from the LMFDB on 16 October 2025. {"abvar_count": 1664, "abvar_counts": [1664, 2629120, 4771160576, 7982439495680, 13425254947621504, 22564039781011456000, 37929373938844457074304, 63759084809722138528440320, 107178929677799157511977652736, 180167785420437305374137911488000], "abvar_counts_str": "1664 2629120 4771160576 7982439495680 13425254947621504 22564039781011456000 37929373938844457074304 63759084809722138528440320 107178929677799157511977652736 180167785420437305374137911488000 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.149099081992387, 0.92232629503399], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 43, "curve_counts": [43, 1561, 69226, 2824881, 115878603, 4750219918, 194755027363, 7984931978721, 327381930454426, 13422659493723801], "curve_counts_str": "43 1561 69226 2824881 115878603 4750219918 194755027363 7984931978721 327381930454426 13422659493723801 ", "curves": ["y^2=21*x^6+38*x^5+3*x^4+2*x^3+26*x^2+33*x", "y^2=8*x^6+28*x^5+9*x^4+31*x^3+14*x^2+16*x+3", "y^2=11*x^6+20*x^5+15*x^4+38*x^3+23*x^2+40*x+40", "y^2=3*x^6+16*x^5+16*x^4+27*x^3+38*x^2+16*x", "y^2=34*x^6+27*x^5+25*x^4+21*x^3+20*x^2+40*x+28", "y^2=11*x^5+35*x^4+35*x^3+26*x^2+30*x+19", "y^2=16*x^6+17*x^5+38*x^4+12*x^3+10*x^2+23*x", "y^2=39*x^6+6*x^4+7*x^3+34*x^2+4*x+12", "y^2=36*x^6+28*x^5+4*x^4+18*x^3+6*x^2+8*x+20", "y^2=32*x^6+x^5+32*x^4+5*x^3+27*x^2+7*x", "y^2=20*x^6+28*x^5+15*x^4+3*x^3+20*x^2+39*x+35", "y^2=29*x^6+26*x^5+25*x^4+15*x^3+19*x^2+35*x+28", "y^2=28*x^6+13*x^5+5*x^4+14*x^3+8*x^2+38*x+3", "y^2=34*x^6+34*x^5+27*x^4+6*x^3+14*x^2+27*x+33", "y^2=9*x^6+15*x^5+37*x^4+13*x^3+24*x^2+5*x+16", "y^2=6*x^6+19*x^5+15*x^4+32*x^3+12*x^2+25*x+38", "y^2=13*x^6+9*x^5+16*x^4+25*x^3+10*x^2+7*x+26", "y^2=4*x^5+5*x^4+22*x^3+11*x^2+13*x+37", "y^2=11*x^6+39*x^5+x^4+30*x^3+22*x+19", "y^2=4*x^6+35*x^5+36*x^4+20*x^3+x^2+24*x+38", "y^2=33*x^6+10*x^5+35*x^4+26*x^3+7*x^2+33*x+9", "y^2=6*x^6+38*x^5+31*x^4+19*x^3+31*x^2+4*x+28", "y^2=34*x^6+22*x^5+6*x^4+23*x^3+4*x^2+35*x+21", "y^2=12*x^5+8*x^4+16*x^3+16*x^2+3"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.1618805.1"], "geometric_splitting_field": "4.0.14225.1", "geometric_splitting_polynomials": [[41, -9, 12, -1, 1]], "group_structure_count": 4, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 24, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 24, "label": "2.41.b_aci", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.1618805.1"], "p": 41, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 1, -60, 41, 1681], "poly_str": "1 1 -60 41 1681 ", "primitive_models": [], "q": 41, "real_poly": [1, 1, -142], "simple_distinct": ["2.41.b_aci"], "simple_factors": ["2.41.b_aciA"], "simple_multiplicities": [1], "singular_primes": ["2,2*F-V-5"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.14225.1", "splitting_polynomials": [[41, -9, 12, -1, 1]], "twist_count": 2, "twists": [["2.41.ab_aci", "2.1681.aer_keq", 2]], "weak_equivalence_count": 4, "zfv_index": 8, "zfv_index_factorization": [[2, 3]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 320, "zfv_singular_count": 2, "zfv_singular_primes": ["2,2*F-V-5"]}